КВАДРАТИЧНАЯ ЗАДАЧА МАТЕМАТИЧЕСКОЙ ДИАГНОСТИКИ*

Н. О. Котелина

А. Б. Певный

nkotelina@gmail.com

pevnyi@syktsu.ru

23 марта 2022 г.

 $\mathbf{1}^{\circ}$. **Введение.** Пусть в пространстве \mathbb{R}^n задано конечное множество точек $\{p_j\}_{j=1}^m$. В простейшей задаче математической диагностики [1] вводится выпуклая оболочка $G=\operatorname{co}\{p_1,\ldots,p_m\}$ точек $\{p_j\}$ и проверяется включение $p\in G$. Если $p\not\in G$, то было бы интересно найти расстояние от p до G,

$$r = \min_{z \in G} \|p - z\|,\tag{1}$$

где ||p-z|| — евклидова норма p-z. Данный доклад посвящён численному решению задачи (1).

 2° . Математическая постановка задачи. Введём векторы $a_j = p_j - p$ и выпуклую оболочку этих векторов:

$$M = \operatorname{co} \{a_1, \dots, a_m\}.$$

Требуется найти расстояние от начала координат до многогранника M,

$$r = \min_{z \in M} \|z\|. \tag{2}$$

Здесь и далее используется евклидова норма $\|z\| = \sqrt{\langle z,z\rangle}$ и обычное скалярное произведение $\langle z,y\rangle$ векторов $z,y\in\mathbb{R}^n$. Множество M состоит из векторов $z=\sum\limits_{j=1}^m x_ja_j$, с коэффициентами x_j , удовлетворяющими условиям $x_j\geqslant 0$ при всех $j\in 1:m$ и $x_1+\cdots+x_m=1$.

 $^{^*}$ Семинар по оптимизации, машинному обучению и искусственному интеллекту «О&ML» http://www.apmath.spbu.ru/oml/

Задача (2) эквивалентна задаче квадратичного программирования

$$f(x) = \frac{1}{2} \langle Dx, x \rangle \to \min,$$

$$x_1 + \dots + x_m = 1,$$

$$x_j \ge 0, \quad j \in 1 : m,$$
(3)

где D — матрица с элементами $d_{ij} = \langle a_i, a_j \rangle$, $i, j \in 1 : m$. Матрица D неотрицательно определена, поэтому функция f(x) выпукла.

Пусть x^* — оптимальный план задачи (3). Он существует ввиду компактности множества планов.

Запишем критерий оптимальности в форме Куна–Таккера. Введем обозначения: e — вектор из m единиц, e_i , $i \in 1 : m$, — координатные орты в \mathbb{R}^m . Ограничения в (3) можно записать в виде $\langle e, x \rangle = 1$, $\langle e_i, x \rangle \geqslant 0$, $i \in 1 : m$. Градиент целевой функции f'(x) равен Dx.

По теореме Куна–Таккера [2] для того, чтобы план x^* был оптимальным, необходимо и достаточно, чтобы нашлось число λ и числа $v_i \geqslant 0$ такие, что

$$Dx^* + \lambda e - \sum_{i=1}^{m} v_i e_i = \mathbb{O},$$

$$\langle e, x^* \rangle = 1,$$

$$x_i^* v_i = 0, \ x_i^* \geqslant 0, \ v_i \geqslant 0, \ i \in 1 : m.$$
(4)

Подчеркнем, что ограничению—равенству соответствует множитель Лагранжа λ любого знака, а неравенствам — множители $v_i \geqslant 0$. Условие $x_i^* v_i$ называется условием дополнительности.

Для решения системы (4) можно использовать идеи линейного программирования. Представим λ в виде $\lambda = \lambda_1 - \lambda_2$, $\lambda_1 \geqslant 0$, $\lambda_2 \geqslant 0$. В первое уравнение системы (4) добавим искусственную переменную u со знаком минус. Придем к задаче:

$$u \to \min$$

$$Dx + (\lambda_1 - \lambda_2)e - \sum_{i=1}^{m} v_i e_i - u e_1 = \mathbb{O},$$

$$\langle e, x \rangle = 1,$$

$$x_i v_i = 0, \ x_i \geqslant 0, \ v_i \geqslant 0, \ i \in 1 : m; \qquad u \geqslant 0; \ \lambda_{1,2} \geqslant 0.$$

$$(5)$$

При решении этой задачи будем применять модифицированный симплексметод с дополнительным условием: если x_i входит в базис, то v_i нельзя вводить в базис, и наоборот.

В книге В. А. Даугавет [5] этот метод называется методом дополнительного базиса. Обоснование метода для случая неотрицательно определенной матрицы D дано в статье [4].

 3° . Построение начального базиса. Укажем начальный базисный план. В первом столбце матрицы D найдём минимальный элемент

$$d_{i_01} = \min_{i \in 1:m} d_{i1}.$$

Если $i_0=1$, то ближайшей точкой многогранника M будет a_1 . Действительно, $\langle a_i,\,a_1\rangle\geqslant\langle a_1,\,a_1\rangle$, а тогда $\langle z,\,a_1\rangle\geqslant\langle a_1,\,a_1\rangle$ и $\langle z-a_1,\,a_1\rangle\geqslant 0$ для всех $z\in M$. Отсюда

$$||z||^2 = ||a_1 + (z - a_1)||^2 = ||a_1||^2 + 2\langle z - a_1, a_1 \rangle + ||z - a_1||^2 \ge ||a_1||^2.$$

Значит a_1 – ближайшая точка, $z^* = a_1$, $r = ||a_1||$ и задача (2) решена.

В дальнейшем считаем $i_0 > 1$.

В начальном базисном плане при $d_{i_01}\geqslant 0$ базисными переменными будут

$$u, v_2, \ldots, v_{i_0-1}, \lambda_2, v_{i_0+1}, \ldots, v_m, x_1$$

со значениями

$$u = d_{11} - d_{i_01}; \quad v_i = d_{i1} - d_{i_01}, \ i \neq i_0; \quad \lambda_2 = d_{i_01}; \quad x_1 = 1.$$

Это действительно план задачи (5), причем выполнено свойство дополнительности: x_1 входит в базис, а v_1 не входит; v_2 входит, а x_2 – не входит. Для индекса i_0 обе переменные x_{i_0} и v_{i_0} не входят в базис. Выгодно поставить λ_2 на место i_0 , тогда в базисной матрице A главная диагональ будет состоять из ± 1 .

Приведем пример при $m=4,\,i_0=3.$ При $d_{i_01}\geqslant 0$ берём $\lambda_2=d_{i_01}.$ Базисная матрица A имеет вид:

$$A = \begin{pmatrix} -1 & 0 & -1 & 0 & d_{11} \\ 0 & -1 & -1 & 0 & d_{21} \\ 0 & 0 & -1 & 0 & d_{i_01} \\ 0 & 0 & -1 & -1 & d_{41} \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$
 (6)

Для обращения матрицы A используем обычный прием приписывания справа единичной матрицы. Мы будем просто писать две матрицы рядом. На первом шаге умножим строки $1, 2, \ldots, m$ в двух матрицах на -1:

$$\begin{pmatrix}
1 & 0 & 1 & 0 & -d_{11} \\
0 & 1 & 1 & 0 & -d_{21} \\
0 & 0 & 1 & 0 & -d_{i_01} \\
0 & 0 & 1 & 1 & -d_{41} \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
-1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}.$$
(7)

На втором шаге зарабатываем нули в столбце i_0 . Из строк $1, \ldots, i_0 - 1, i_0 + 1, \ldots, m$ вычитаем строку i_0 :

$$\begin{pmatrix}
1 & 0 & 0 & 0 & -d_{11} + d_{i_01} \\
0 & 1 & 0 & 0 & -d_{21} + d_{i_01} \\
0 & 0 & 1 & 0 & -d_{i_01} \\
0 & 0 & 0 & 1 & -d_{41} + d_{i_01} \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
-1 & 0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}.$$
(8)

На третьем шаге зарабатываем нули в последнем столбце. Из строк с номерами $i=1,\ldots,i_0-1,i_0+1,\ldots,m$ вычитаем последнюю строку, умноженную на $-d_{i1}+d_{i_01}$. Из строки i_0 вычитаем последнюю, умноженную на $-d_{i_01}$. Получим справа обратную матрицу $B=A^{-1}$:

$$B = \begin{pmatrix} -1 & 0 & 1 & 0 & d_{11} - d_{i_01} \\ 0 & -1 & 1 & 0 & d_{21} - d_{i_01} \\ 0 & 0 & -1 & 0 & d_{i_01} \\ 0 & 0 & 1 & -1 & d_{41} - d_{i_01} \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$
(9)

Записи можно сократить, если использовать прием замены столбца, описанный в докладе [6], п. 6°.

Если $d_{i_01}<0$, то в базис вводится λ_1 со значением $\lambda_1=-d_{i_01}=|d_{i_01}|$ и также на место i_0 .

В базисной матрице A столбец i_0 умножится на -1, а в матрице B строка i_0 умножится на -1. В программе матрицы A вообще не будет, а матрица B[1:m+1, 1:m+1] заполняется по следующему алгоритму:

- 1) заполнить B нулями;
- 2) для $i=1,2,\ldots,m$ выполнить присваивания $B[i,i_0]:=1;\ B[i,i]:=-1;\ B[i,m+1]:=d[i,1]-d[i_0,1];$
- 3) $B[i_0, m+1] := d[i_0, 1]; B[m+1, m+1] := 1;$
- 4) Если $d[i_0,1] < 0$, то у элементов $B[i_0,i_0]$ и $B[i_0,m+1]$ поменять знак.
- **4**°. **Вычисление оценок.** Двойственный вектор $y=c_bB$, где c_b это строка из коэффициентов целевой функции при базисных переменных. Она имеет вид $c_b=(1,0,\ldots,0)$ на всех итерациях. Отсюда

$$y[k] = B[1, k], \quad k \in 1 : m + 1.$$

Чтобы обеспечить выполнение условия $x_iv_i=0$ введём булевский массив xv[1:m], где xv[i]=true, если x_i или v_i входят в базис. Введем также булевскую переменную

$$bl = egin{cases} true, & \lambda_1 \text{ или } \lambda_2 \text{ входят в базис;} \\ false, & \text{иначе.} \end{cases}$$

В начале xv[i] := true для всех $i \neq i_0$, $xv[i_0] := false$. Положим также bl := true. Среди переменных, которые в принципе можно ввести в базис, выбирается переменная с максимальной оценкой. Переменным присвоим номера: x_i имеет номер i, v_i – номер $-i, \lambda_1$ – номер $m+1, \lambda_2$ – номер m+2, а переменная u будет иметь номер 0.

Алгоритм определения переменной, вводимой в базис

```
\max:=0;
Для j=1,\,2,\ldots,\,m выполнить действия
\mathrm{Eсли}\;xv[j]=false,\,\mathrm{to}
\Delta(x_j):=\sum_{k=1}^mB[1,\,k]\cdot d[k,\,j]+B[1,\,m+1];
\mathrm{Eсли}\;\Delta(x_j)>\max,\,\mathrm{to}\;\{\max:=\Delta(x_j);\,j_0:=j\}
\Delta(v_j)=-B[1,\,j];
\mathrm{Eсли}\;\Delta(v_j)>\max,\,\mathrm{to}\;\{\max:=\Delta(v_j);\,j_0:=-j\}
\mathrm{Eсли}\;bl=false,\,\mathrm{to}\;\mathrm{вычисляем}\;\mathrm{оценки}
\Delta(\lambda_1)=\sum_{k=1}^mB[1,k];
\mathrm{Eсли}\;\Delta(\lambda_1)>\max,\,\mathrm{to}\;\{\max:=\Delta(\lambda_1);\,j_0:=m+1\}
\Delta(\lambda_2)=-\sum_{k=1}^mB[1,k];
\mathrm{Eсли}\;\Delta(\lambda_2)>\max,\,\mathrm{to}\;\{\max:=\Delta(\lambda_2);\,j_0:=m+2\}
\mathrm{Eсли}\;\Delta(\lambda_2)>\max,\,\mathrm{to}\;\{\max:=\Delta(\lambda_2);\,j_0:=m+2\}
\mathrm{Eсли}\;\max=0,\,\mathrm{to}\;\mathrm{teкущий}\;\mathrm{план}\;\mathrm{является}\;\mathrm{oптимальным}.
\mathrm{Eсли}\;\max>0,\,\mathrm{to}\;\mathrm{nepemenhyo}\;\mathrm{c}\;\mathrm{homepom}\;j_0\;\mathrm{вводим}\;\mathrm{b}\;\mathrm{базис}.
```

Остальные шаги модифицированного симплекс-метода подробно описаны в докладе [1].

 5° . Программная реализация. В 2017 году в Сыктывкарском университете была выполнена дипломная работа, где описанный метод реализован на C++. В работе был, в частности, такой пример: $m=n=100,\ a_j=e_j,\ j\in 1:n$. Ближайшей к началу координат точкой многогранника M будет $z^*=(\frac{1}{n},\frac{1}{n},\ldots,\frac{1}{n})$. Программа выдала $z^*=(0.01,0.01,\ldots,0.01)$ на 99-ой итерации.

ЛИТЕРАТУРА

- 1. Малозёмов В. Н., Чернэуцану Е. К. *Простейшая задача математической диагностики* // Семинар «О & ML». Избранные доклады. 9 февраля 2022 г. (http://www.apmath.spbu.ru/oml/reps22.shtml#0209)
- 2. Гавурин М. К., Малозёмов В. Н. Экстремальные задачи с линейными ограничениями. Л.: Изд-во ЛГУ, 1984. 176 с.
- 3. Певный А. Б. K нахождению точки многогранника, ближайшей к началу координат // Сб. "Оптимизация". 1973. Вып. 10 (27). С. 54–58.
- 4. Даугавет В. А., Лазарев А. В. *Развитие метода Данцига в квадратичном программировании* // Ж. вычисл. матем. и матем. физ. 1986. Т. 26. № 3. С. 430–438.
- 5. Даугавет В. А. Численные методы квадратичного программирования // СПб. Изд-во СПбГУ, 2004. 128 с.
- 6. Малозёмов В. Н. *Модифицированный симплекс-метод* // Семинар «DHA & CAGD». Избранные доклады. 20 ноября 2010 г. (http://dha.spb.ru/reps10.shtml#1120)