Автономная навигация мобильных роботов:
 биомиметика и математика

Saint Petersburg University
Department of
Theoretical Cybernetics

A. Matveev
almat1712@yahoo.com

Biomimetics in robotics

Biomimetics in robotics

Algorithms and software

Robots' Navigation

The aim of navigation is searching a (optimal or suboptimal) path from the start point to the destination point with obstacle avoidance competence.

Robots' Navigation

The aim of navigation is searching a (optimal or suboptimal) path from the start point to the destination point with obstacle avoidance competence.
Classic concept :
Self-localisation + Path planning

+ Map-building + map-using

Algorithms and software

- Navigation is the process of determining and maintaining
a course or trajectory to a destination location

Robots' Navigation

The aim of navigation is searching a (optimal or suboptimal) path from the start point to the destination point with obstacle avoidance competence.

Classic concept :

Self-localisation + Path planning

+ Map-building + map-using

Algorithms and software

Hardware design

Tactile sensor 4. $6=$ $4{ }^{2}$ -

Robots' Navigation

The aim of navigation is searching a (optimal or suboptimal) path from the start point to the destination point with obstacle avoidance competence.

Classic concept :

Self-localisation + Path planning

+ Map-building + map-using

Algorithms and software

Hardware design

Tactile sensor +4. $=$ $2 .{ }^{2}$ -

Robots' Navigation

The aim of navigation is searching a (optimal or suboptimal) path from the start point to the destination point with obstacle avoidance competence.

Classic concept :

Self-localisation + Path planning

+ Map-building + map-using

Algorithms and software

Hardware design

Tactile sensor 4. $=$ 4. -

Robots' Navigation

The aim of navigation is searching a (optimal or suboptimal) path from the start point to the destination point with obstacle avoidance competence.

Classic concept :

Self-localisation + Path planning

+ Map-building + map-using

Algorithms and software

Hardware design

Tactile sensor

Robots' Navigation

The aim of navigation is searching a (optimal or suboptimal) path from the start point to the destination point with obstacle avoidance competence.

Classic concept :

Self-localisation + Path planning

+ Map-building + map-using

Algorithms and software

Hardware design

Tactile sensor 4. $6=$ -

Navigation is the process of determining and maintaining a course or trajectory to a destination location
Environment: Structured (known, predictable) \leftrightarrow Unstructured (unknown, unpredictable)

- Planning horizon: Global \leftrightarrow Local \leftrightarrow Reactive
- Kinematic control
- Guarantees of goal attainment
under conditions that are close to
those necessary for the mission feasibility

Robots' Navigation

The aim of navigation is searching a (optimal or suboptimal) path from the start point to the destination point with obstacle avoidance competence.

Classic concept :

Self-localisation + Path planning

+ Map-building + map-using

Examples with popular insects

Examples with popular insects

Honey bees navigation

Ants navigation

$$
\begin{array}{ll}
\dot{x}=v \cos \theta, & \dot{\theta}=u \\
\dot{y}=v \sin \theta, & |u| \leq \bar{u}
\end{array}
$$

$P(\boldsymbol{r})$ - pheromone concentration
at location \boldsymbol{r}
$L=\int P[\boldsymbol{r}+R(\theta) \boldsymbol{z}] \mu_{L}(d \boldsymbol{z})$,
$R=\int P[\boldsymbol{r}+R(\theta) \boldsymbol{z}] \mu_{R}(d \boldsymbol{z})$
$R(\theta)$ rotation through angle θ

Examples with popular insects

Honey bees navigation

Ants navigation

$$
\begin{array}{ll}
\dot{x}=v \cos \theta, & \dot{\theta}=u \\
\dot{y}=v \sin \theta, & |u| \leq \bar{u}
\end{array}
$$

$P(\boldsymbol{r})$ - pheromone concentration
at location \boldsymbol{r}

$$
L=\int P[\boldsymbol{r}+R(\theta) \boldsymbol{z}] \mu_{L}(d \boldsymbol{z})
$$

$$
R=\int P[\boldsymbol{r}+R(\theta) \boldsymbol{z}] \mu_{R}(d \boldsymbol{z})
$$

$R(\theta)$ rotation through angle θ

$$
u=\bar{u} \cdot \operatorname{sgn}(L-R)
$$

Examples with popular insects


```
```

Ants navigation

```
```

```
```

Ants navigation

```
```

$\dot{x}=v \cos \theta, \quad \dot{\theta}=u$,
$\dot{y}=v \sin \theta, \quad|u| \leq \bar{u}$,
$P(\boldsymbol{r})-$ pheromone concentration
at location \boldsymbol{r},

Examples with popular insects

$$
P(\boldsymbol{r}) \text { - pheromone concentration }
$$

Does the ant succeed?

```
Ants navigation
```

$$
\text { at location } \boldsymbol{r}
$$

$$
\begin{array}{ll}
\dot{x}=v \cos \theta, & \dot{\theta}=u \\
\dot{y}=v \sin \theta, & |u| \leq \bar{u}
\end{array}
$$

$$
L=\int P[\boldsymbol{r}+R(\theta) \boldsymbol{z}] \mu_{L}(d \boldsymbol{z})
$$

$$
R=\int P[\boldsymbol{r}+R(\theta) \boldsymbol{z}] \mu_{R}(d \boldsymbol{z})
$$

$$
R(\theta) \text { rotation through angle } \theta
$$

$$
u=\bar{u} \cdot \operatorname{sgn}(L-R)
$$

Examples with popular insects

Does the ant succeed?

```
Ants navigation
```

y^{\wedge}
v constant speed of the ant

1
$R_{\text {turn }}=$
minimal turning radius

$$
\begin{array}{ll}
\dot{x}=v \cos \theta, & \dot{\theta}=u \\
\dot{y}=v \sin \theta, & |u| \leq \bar{u}
\end{array}
$$

$$
P(\boldsymbol{r})-\text { pheromone concentration }
$$ at location \boldsymbol{r}

$$
L=\int P[\boldsymbol{r}+R(\theta) \boldsymbol{z}] \mu_{L}(d \boldsymbol{z})
$$

$$
R=\int P[\boldsymbol{r}+R(\theta) \boldsymbol{z}] \mu_{R}(d \boldsymbol{z})
$$

$$
R(\theta) \text { rotation through angle } \theta
$$

$$
u=\bar{u} \cdot \operatorname{sgn}(L-R)
$$

Examples with popular insects

Does the ant succeed?

```
Ants navigation
```


$$
\begin{array}{ll}
\dot{x}=v \cos \theta, & \dot{\theta}=u \\
\dot{y}=v \sin \theta, & |u| \leq \bar{u},
\end{array}
$$

$P(\boldsymbol{r})$ - pheromone concentration at location \boldsymbol{r} $L=\int P[\boldsymbol{r}+R(\theta) \boldsymbol{z}] \mu_{L}(d \boldsymbol{z})$, $R=\int P[\boldsymbol{r}+R(\theta) \boldsymbol{z}] \mu_{R}(d \boldsymbol{z})$ $R(\theta)$ rotation through angle θ

$$
u=\bar{u} \cdot \operatorname{sgn}(L-R)
$$

Does the ant succeed?

```
Ants navigation
```


$$
\begin{array}{ll}
\dot{x}=v \cos \theta, & \dot{\theta}=u \\
\dot{y}=v \sin \theta, & |u| \leq \bar{u}
\end{array}
$$

$P(\boldsymbol{r})$ - pheromone concentration at location \boldsymbol{r} $L=\int P[\boldsymbol{r}+R(\theta) \boldsymbol{z}] \mu_{L}(d \boldsymbol{z})$, $R=\int P[\boldsymbol{r}+R(\theta) \boldsymbol{z}] \mu_{R}(d \boldsymbol{z})$ $R(\theta)$ rotation through angle θ $u=\bar{u} \cdot \mathbf{s g n}(L-R)$
maximizer

What is the practical aspect of this misery about ants

Does the ant succeed?

The targeted vicinity of the maximizer $V_{\max }$ is so wide that the ant is able to remain there

Ants navigation

near the
maximizer

$$
\begin{array}{ll}
\dot{x}=v \cos \theta, & \dot{\theta}=u \\
\dot{y}=v \sin \theta, & |u| \leq \bar{u}
\end{array}
$$

$P(\boldsymbol{r})$ - pheromone concentration at location \boldsymbol{r} $L=\int P[\boldsymbol{r}+R(\theta) \boldsymbol{z}] \mu_{L}(d \boldsymbol{z})$, $R=\int P[\boldsymbol{r}+R(\theta) \boldsymbol{z}] \mu_{R}(d \boldsymbol{z})$ $R(\theta)$ rotation through angle θ

$$
u=\bar{u} \cdot \operatorname{sgn}(L-R)
$$

What is the practical aspect of this misery about ants

Does the ant succeed?

The targeted vicinity of the maximizer $V_{\max }$ is so wide that the ant is able to remain there

```
Ants navigation
```


$$
\begin{array}{ll}
\dot{x}=v \cos \theta, & \dot{\theta}=u \\
\dot{y}=v \sin \theta, & |u| \leq \bar{u}
\end{array}
$$

$P(\boldsymbol{r})$ - pheromone concentration at location \boldsymbol{r} $L=\int P[\boldsymbol{r}+R(\theta) \boldsymbol{z}] \mu_{L}(d \boldsymbol{z})$, $R=\int P[\boldsymbol{r}+R(\theta) \boldsymbol{z}] \mu_{R}(d \boldsymbol{z})$ $R(\theta)$ rotation through angle θ $u=\bar{u} \cdot \mathbf{s g n}(L-R)$

What is the practical aspect of this misery about ants

Does the ant succeed?

The targeted vicinity of the maximizer $V_{\max }$ is so wide that the ant is able to remain there

- On its way to $V_{\max }$, the robot does not encounter excessively contorted isolines

Ants navigation

$$
\begin{array}{ll}
\dot{x}=v \cos \theta, & \dot{\theta}=u \\
\dot{y}=v \sin \theta, & |u| \leq \bar{u}
\end{array}
$$

$P(\boldsymbol{r})$ - pheromone concentration at location \boldsymbol{r}

$$
L=\int P[\boldsymbol{r}+R(\theta) \boldsymbol{z}] \mu_{L}(d \boldsymbol{z})
$$

$$
R=\int P[\boldsymbol{r}+R(\theta) \boldsymbol{z}] \mu_{R}(d \boldsymbol{z})
$$

$R(\theta)$ rotation through angle θ

$$
u=\bar{u} \cdot \operatorname{sgn}(L-R)
$$

What is the practical aspect of this misery about ants

Does the ant succeed?

The targeted vicinity of the maximizer $V_{\max }$ is so wide that the ant is able to remain there
On its way to $V_{\max }$, the robot does not encounter excessively contorted isolines

The field is unimodal

Ants navigation

$$
\begin{array}{ll}
\dot{x}=v \cos \theta, & \dot{\theta}=u \\
\dot{y}=v \sin \theta, & |u| \leq \bar{u}
\end{array}
$$

$P(\boldsymbol{r})$ - pheromone concentration at location \boldsymbol{r}

$$
L=\int P[\boldsymbol{r}+R(\theta) \boldsymbol{z}] \mu_{L}(d \boldsymbol{z})
$$

$$
R=\int P[\boldsymbol{r}+R(\theta) \boldsymbol{z}] \mu_{R}(d \boldsymbol{z})
$$

$R(\theta)$ rotation through angle θ

$$
u=\bar{u} \cdot \operatorname{sgn}(L-R)
$$

What is the practical aspect of this misery about ants

Does the ant succeed?

The targeted vicinity of the maximizer $V_{\max }$ is so wide that the ant is able to remain there
On its way to $V_{\text {max }}$, the robot does not encounter excessively contorted isolines

The field is unimodal
the parameters of the control law can be tuned so that the ant arrives at $V_{\text {max }}$ in a finite time an remains there afterwards

```
Ants navigation
```


$$
\begin{array}{ll}
\dot{x}=v \cos \theta, & \dot{\theta}=u \\
\dot{y}=v \sin \theta, & |u| \leq \bar{u}
\end{array}
$$

$P(\boldsymbol{r})$ - pheromone concentration at location \boldsymbol{r}

$$
L=\int P[\boldsymbol{r}+R(\theta) \boldsymbol{z}] \mu_{L}(d \boldsymbol{z})
$$

$$
R=\int P[\boldsymbol{r}+R(\theta) \boldsymbol{z}] \mu_{R}(d \boldsymbol{z})
$$

$R(\theta)$ rotation through angle θ

$$
u=\bar{u} \cdot \operatorname{sgn}(L-R)
$$

What is the practical aspect of this misery about ants

Does the ant succeed?

The targeted vicinity of the maximizer $V_{\max }$ is so wide that the ant is able to remain there
On its way to $V_{\text {max }}$, the robot does not encounter excessively contorted isolines

The field is unimodal
the parameters of the control law can be tuned so that the ant arrives at $V_{\text {max }}$ in a finite time an remains there afterwards

```
Ants navigation
```


$$
\begin{array}{ll}
\dot{x}=v \cos \theta, & \dot{\theta}=u \\
\dot{y}=v \sin \theta, & |u| \leq \bar{u}
\end{array}
$$

$P(\boldsymbol{r})$ - pheromone concentration at location \boldsymbol{r}

$$
L=\int P[\boldsymbol{r}+R(\theta) \boldsymbol{z}] \mu_{L}(d \boldsymbol{z})
$$

$$
R=\int P[\boldsymbol{r}+R(\theta) \boldsymbol{z}] \mu_{R}(d \boldsymbol{z})
$$

$R(\theta)$ rotation through angle θ

$$
u=\bar{u} \cdot \operatorname{sgn}(L-R)
$$

What is the practical aspect of this misery about ants

Does the ant succeed?

The targeted vicinity of the maximizer $V_{\max }$ is so wide that the ant is able to remain there
On its way to $V_{\text {max }}$, the robot does not encounter excessively contorted isolines

The field is unimodal
the parameters of the control law can be tuned
so that the ant arrives at $V_{\max }$ in a finite time an remains there afterwards

```
Ants navigation
```


$$
\begin{array}{ll}
\dot{x}=v \cos \theta, & \dot{\theta}=u \\
\dot{y}=v \sin \theta, & |u| \leq \bar{u}
\end{array}
$$

$P(\boldsymbol{r})$ - pheromone concentration at location \boldsymbol{r}

$$
L=\int P[\boldsymbol{r}+R(\theta) \boldsymbol{z}] \mu_{L}(d \boldsymbol{z})
$$

$$
R=\int P[\boldsymbol{r}+R(\theta) \boldsymbol{z}] \mu_{R}(d \boldsymbol{z})
$$

$R(\theta)$ rotation through angle θ

$$
u=\bar{u} \cdot \operatorname{sgn}(L-R)
$$

Inspiration point: peregrine falcon and equiangular navigation

Inspiration point: peregrine falcon and equiangular navigation

Inspiration point: peregrine falcon and equiangular navigation

Logarithmic spiral

Inspiration point: peregrine falcon and equiangular navigation

Inspiration point: peregrine falcon and equiangular navigation

$d=-v \cos \varphi$, where v is the robots speed
$\dot{d}=-\nu=$ const \Rightarrow motion over a logarithmic
spiral

Inspiration point: peregrine falcon and equiangular navigation

$d=-v \cos \varphi$, where v is the robots speed
$\dot{d}=-\nu=$ const \Rightarrow motion over a logarithmic spiral

$$
\begin{aligned}
& \text { Dubins vehicle } \\
& \dot{x}_{i}=v_{i} \cos \theta_{i} \quad \dot{\theta}_{i}=u_{i} \in\left[-\bar{u}_{i}, \bar{u}_{i}\right] \\
& \dot{y}_{i}=v_{i} \sin \theta_{i}, \quad v_{i} \in\left[0, \bar{v}_{1}\right], v_{2}=\text { const }
\end{aligned}
$$

Logarithmic spiral

Inspiration point: peregrine falcon and equiangular navigation

$d=-v \cos \varphi$, where v is the robots speed
$d=-\nu=$ const \Rightarrow motion over a logarithmic spiral

Dubins vehicle

$$
\begin{array}{ll}
\dot{x}_{i}=v_{i} \cos \theta_{i} & \dot{\theta}_{i}=u_{i} \in\left[-\bar{u}_{i}, \bar{u}_{i}\right] \\
\dot{y}_{i}=v_{i} \sin \theta_{i}
\end{array}, \quad v_{i} \in\left[0, \bar{v}_{1}\right], v_{2}=\text { const } k
$$

The prey is unable to increase the distance d if and only if $v_{2} \geq \bar{v}_{1}$ and $\bar{u}_{2} v_{2} \geq \bar{u}_{1} \bar{v}_{1}+d^{-1}\left(v_{2}+\bar{v}_{1}\right)$

Logarithmic spiral

Inspiration point: peregrine falcon and equiangular navigation

$d=-v \cos \varphi$, where v is the robots speed
$\dot{d}=-\nu=$ const \Rightarrow motion over a logarithmic spiral

$$
, \quad v_{i} \in\left[0, \bar{v}_{1}\right], v_{2}=\text { const } 6
$$

The prey is unable to increase the distance d if and only if $v_{2} \geq \bar{v}_{1}$ and $\bar{u}_{2} v_{2} \geq \bar{u}_{1} \bar{v}_{1}+d^{-1}\left(v_{2}+\bar{v}_{1}\right)$

Basic control paradigm

$$
u_{2}=\bar{u}_{2} \operatorname{sgn}[\dot{d}-\nu]
$$

Inspiration point: peregrine falcon and equiangular navigation

Logarithmic spiral
$d=-v \cos \varphi$, where v is the robots speed
$\dot{d}=-\nu=$ const \Rightarrow motion over a logarithmic spiral

Dubins vehicle

$$
\begin{aligned}
& \dot{x}_{i}=v_{i} \cos \theta_{i} \quad \dot{\theta}_{i}=u_{i} \in\left[-\bar{u}_{i}, \bar{u}_{i}\right] \\
& \dot{y}_{i}=v_{i} \sin \theta_{i}, \quad v_{i} \in\left[0, \bar{v}_{1}\right], v_{2}=\text { const }
\end{aligned}
$$

The prey is unable to increase the distance d if and only if $v_{2} \geq \bar{v}_{1}$ and $\bar{u}_{2} v_{2} \geq \bar{u}_{1} \bar{v}_{1}+d^{-1}\left(v_{2}+\bar{v}_{1}\right)$

Basic control paradigm

$$
\begin{gathered}
u_{2}=\bar{u}_{2} \operatorname{sgn}[\dot{d}-\nu] \\
u_{2}=\bar{u}_{2} \operatorname{sgn}\left[\dot{d}+\mu \chi\left(d-d_{0}\right)\right], \mu>0
\end{gathered}
$$

Inspiration point: peregrine falcon and equiangular navigation

$d=-v \cos \varphi$, where v is the robots speed

Logarithmic spiral
$\dot{d}=-\nu=$ const \Rightarrow motion over a logarithmic spiral

Dubins vehicle

$$
\begin{array}{ll}
\dot{x}_{i}=v_{i} \cos \theta_{i} & \dot{\theta}_{i}=u_{i} \in\left[-\bar{u}_{i}, \bar{u}_{i}\right] \\
\dot{y}_{i}=v_{i} \sin \theta_{i}
\end{array}, \quad v_{i} \in\left[0, \bar{v}_{1}\right], v_{2}=\text { const }
$$

The prey is unable to increase the distance d if and only if $v_{2} \geq \bar{v}_{1}$ and $\bar{u}_{2} v_{2} \geq \bar{u}_{1} \bar{v}_{1}+d^{-1}\left(v_{2}+\bar{v}_{1}\right)$

Extensions

Basic control paradigm

$$
\begin{gathered}
u_{2}=\bar{u}_{2} \operatorname{sgn}[\dot{d}-\nu] \\
u_{2}=\bar{u}_{2} \operatorname{sgn}\left[\dot{d}+\mu \chi\left(d-d_{0}\right)\right], \mu>0
\end{gathered}
$$

d is not necessarily the distance to a single pointwise target Many targets, extended targets, cumulative strength of a signal, value of a scalar field

Inspiration point: peregrine falcon and equiangular navigation

$d=-v \cos \varphi$, where v is the robots speed

Logarithmic spiral
$\dot{d}=-\nu=$ const \Rightarrow motion over a logarithmic spiral

Dubins vehicle

$$
\begin{array}{ll}
\dot{x}_{i}=v_{i} \cos \theta_{i} & \dot{\theta}_{i}=u_{i} \in\left[-\bar{u}_{i}, \bar{u}_{i}\right] \\
\dot{y}_{i}=v_{i} \sin \theta_{i}
\end{array}, \quad v_{i} \in\left[0, \bar{v}_{1}\right], v_{2}=\text { const }
$$

The prey is unable to increase the distance d if and only if $v_{2} \geq \bar{v}_{1}$ and $\bar{u}_{2} v_{2} \geq \bar{u}_{1} \bar{v}_{1}+d^{-1}\left(v_{2}+\bar{v}_{1}\right)$

Extensions

Basic control paradigm

$$
\begin{gathered}
u_{2}=\bar{u}_{2} \operatorname{sgn}[\dot{d}-\nu] \\
u_{2}=\bar{u}_{2} \mathbf{s g n}\left[\dot{d}+\mu \chi\left(d-d_{0}\right)\right], \mu>0
\end{gathered}
$$

Not necessarily a Dubins-car like robot extensions on 3 dimensions

Inspiration point: peregrine falcon and equiangular navigation

$d=-v \cos \varphi$, where v is the robots speed

Logarithmic spiral
$\dot{d}=-\nu=$ const \Rightarrow motion over a logarithmic spiral

Dubins vehicle

$$
\begin{array}{ll}
\dot{x}_{i}=v_{i} \cos \theta_{i} & \dot{\theta}_{i}=u_{i} \in\left[-\bar{u}_{i}, \bar{u}_{i}\right] \\
\dot{y}_{i}=v_{i} \sin \theta_{i}
\end{array}, \quad v_{i} \in\left[0, \bar{v}_{1}\right], v_{2}=\text { const }
$$

The prey is unable to increase the distance d if and only if $v_{2} \geq \bar{v}_{1}$ and $\bar{u}_{2} v_{2} \geq \bar{u}_{1} \bar{v}_{1}+d^{-1}\left(v_{2}+\bar{v}_{1}\right)$

Extensions

Basic control paradigm

$$
\begin{gathered}
u_{2}=\bar{u}_{2} \operatorname{sgn}[\dot{d}-\nu] \\
u_{2}=\bar{u}_{2} \mathbf{s g n}\left[\dot{d}+\mu \chi\left(d-d_{0}\right)\right], \mu>0
\end{gathered}
$$

- Not necessarily a Dubins-car like robot extensions on 3 dimensions
To whom much is given, from him it will be asked:
Convergence under conditions nearly necessarily to the mission feasibility

Discontinuous control laws and sliding mode regimes

Toy example
$\dot{x}=u \in \mathbb{R}$, objective: $x \rightarrow 0$

Discontinuous control laws and sliding mode regimes

Toy example
$\dot{x}=u \in \mathbb{R}$, objective: $x \rightarrow 0$
control law: $u=-\mathbf{s g n} x$

Discontinuous control laws and sliding mode regimes

Toy example
$\dot{x}=u \in \mathbb{R}$, objective: $x \rightarrow 0$
control law: $u=-\mathbf{s g n} x$

Toy example
$\dot{x}=u \in \mathbb{R}$, objective: $x \rightarrow 0$
control law: $u=-\mathbf{s g n} x$

$\dot{x}= \begin{cases}-1 & \text { if } x \geq \varepsilon \\ -\frac{x}{\varepsilon} & \text { if }-\varepsilon<x<\varepsilon \\ 1 & \text { if } x \leq-\varepsilon\end{cases}$

Toy example
$\dot{x}=u \in \mathbb{R}$, objective: $x \rightarrow 0$
control law: $u=-\mathbf{s g n} x$

$\dot{x}= \begin{cases}-1 & \text { if } x \geq \varepsilon \\ -\frac{x}{\varepsilon} & \text { if }-\varepsilon<x<\varepsilon \\ 1 & \text { if } x \leq-\varepsilon\end{cases}$

Toy example
$\dot{x}=u \in \mathbb{R}$, objective: $x \rightarrow 0$ control law: $u=-\mathbf{s g n} x$

$\dot{x}= \begin{cases}-1 & \text { if } x \geq \varepsilon \\ -\frac{x}{\varepsilon} & \text { if }-\varepsilon<x<\varepsilon \\ 1 & \text { if } x \leq-\varepsilon\end{cases}$

Discontinuous control laws and sliding mode regimes

Toy example
$\dot{x}=u \in \mathbb{R}$, objective: $x \rightarrow 0$
control law: $u=-\mathbf{s g n} x$

$\dot{x}= \begin{cases}-1 & \text { if } x \geq \varepsilon \\ -\frac{x}{\varepsilon} & \text { if }-\varepsilon<x<\varepsilon \\ 1 & \text { if } x \leq-\varepsilon\end{cases}$

General case

$$
\dot{x}=a(x)+b(x) u, x \in \mathbb{R}^{n}, u \in \mathbb{R}, \quad u=u(x):= \begin{cases}u_{+} & \text {if } g(x) \geq 0 \\ u_{-} & \text {if } g(x)<0\end{cases}
$$

Toy example
$\dot{x}=u \in \mathbb{R}$, objective: $x \rightarrow 0$
control law: $u=-\mathbf{s g n} x$

$\dot{x}= \begin{cases}-1 & \text { if } x \geq \varepsilon \\ -\frac{x}{\varepsilon} & \text { if }-\varepsilon<x<\varepsilon \\ 1 & \text { if } x \leq-\varepsilon\end{cases}$

General case

$$
\begin{gathered}
\dot{x}=a(x)+b(x) u, x \in \mathbb{R}^{n}, u \in \mathbb{R}, \quad u=u(x):= \begin{cases}u_{+} & \text {if } g(x) \geq 0 \\
u_{-} & \text {if } g(x)<0\end{cases} \\
\dot{x}=f(x):= \begin{cases}f_{+}(x) & \text { if } g(x) \geq 0 \\
f_{-}(x) & \text { if } g(x)<0\end{cases}
\end{gathered}
$$

Toy example

$\dot{x}=u \in \mathbb{R}$, objective: $x \rightarrow 0$ control law: $u=-\mathbf{s g n} x$

$\dot{x}= \begin{cases}-1 & \text { if } x \geq \varepsilon \\ -\frac{x}{\varepsilon} & \text { if }-\varepsilon<x<\varepsilon \\ 1 & \text { if } x \leq-\varepsilon\end{cases}$

General case

$$
\begin{gathered}
\dot{x}=a(x)+b(x) u, x \in \mathbb{R}^{n}, u \in \mathbb{R}, \quad u=u(x):= \begin{cases}u_{+} & \text {if } g(x) \geq 0 \\
u_{-} & \text {if } g(x)<0\end{cases} \\
\dot{x}=f(x):= \begin{cases}f_{+}(x) & \text { if } g(x) \geq 0 \\
f_{-}(x) & \text { if } g(x)<0\end{cases}
\end{gathered}
$$

General case

Toy example

$\dot{x}=u \in \mathbb{R}$, objective: $x \rightarrow 0$ control law: $u=-\mathbf{s g n} x$

$$
\dot{x}= \begin{cases}-1 & \text { if } x \geq \varepsilon \\ -\frac{x}{\varepsilon} & \text { if }-\varepsilon<x<\varepsilon \\ 1 & \text { if } x \leq-\varepsilon\end{cases}
$$

$$
\dot{x}=f(x):= \begin{cases}f_{+}(x) & \text { if } g(x) \geq 0 \\ f_{-}(x) & \text { if } g(x)<0\end{cases}
$$

$\dot{x}\left\{\begin{array}{l}\text { is tangent to the discontinuity surface } \\ \text { lies on the straight line segment with the ends } f_{-}(x) \text { and } f_{t}(x)\end{array}\right.$

General case

Toy example

$\dot{x}=u \in \mathbb{R}$, objective: $x \rightarrow 0$ control law: $u=-\mathbf{s g n} x$

$$
\dot{x}= \begin{cases}-1 & \text { if } x \geq \varepsilon \\ -\frac{x}{\varepsilon} & \text { if }-\varepsilon<x<\varepsilon \\ 1 & \text { if } x \leq-\varepsilon\end{cases}
$$

$$
\begin{gathered}
\dot{x}=a(x)+b(x) u, x \in \mathbb{R}^{n}, u \in \mathbb{R}, \quad u=u(x):= \begin{cases}u_{+} & \text {if } g(x) \geq 0 \\
u_{-} & \text {if } g(x)<0\end{cases} \\
\dot{x}=f(x):= \begin{cases}f_{+}(x) & \text { if } g(x) \geq 0 \\
f_{-}(x) & \text { if } g(x)<0\end{cases}
\end{gathered}
$$

$\dot{x}\left\{\begin{array}{l}\text { is tangent to the discontinuity surface } \\ \text { lies on the straight line segment with the ends } f_{-}(x) \text { and } f_{ \pm}(x)\end{array}\right.$

Toy example

$\dot{x}=u \in \mathbb{R}$, objective: $x \rightarrow 0$ control law: $u=-\mathbf{s g n} x$

$$
\dot{x}= \begin{cases}-1 & \text { if } x \geq \varepsilon \\ -\frac{x}{\varepsilon} & \text { if }-\varepsilon<x<\varepsilon \\ 1 & \text { if } x \leq-\varepsilon\end{cases}
$$

General case

$$
\begin{gathered}
\dot{x}=a(x)+b(x) u, x \in \mathbb{R}^{n}, u \in \mathbb{R}, \quad u=u(x):= \begin{cases}u_{+} & \text {if } g(x) \geq 0 \\
u_{-} & \text {if } g(x)<0\end{cases} \\
\dot{x}=f(x):= \begin{cases}f_{+}(x) & \text { if } g(x) \geq 0 \\
f_{-}(x) & \text { if } g(x)<0\end{cases}
\end{gathered}
$$

$\dot{x}\left\{\begin{array}{l}\text { is tangent to the discontinuity surface } \\ \text { lies on the straight line segment with the ends } f_{-}(x) \text { and } f_{ \pm}(x)\end{array}\right.$

Toy example

$\dot{x}=u \in \mathbb{R}$, objective: $x \rightarrow 0$ control law: $u=-\mathbf{s g n} x$

$\dot{x}= \begin{cases}-1 & \text { if } x \geq \varepsilon \\ -\frac{x}{\varepsilon} & \text { if }-\varepsilon<x<\varepsilon \\ 1 & \text { if } x \leq-\varepsilon\end{cases}$

General case

$$
\begin{gathered}
\dot{x}=a(x)+b(x) u, x \in \mathbb{R}^{n}, u \in \mathbb{R}, \quad u=u(x):= \begin{cases}u_{+} & \text {if } g(x) \geq 0 \\
u_{-} & \text {if } g(x)<0\end{cases} \\
\dot{x}=f(x):= \begin{cases}f_{+}(x) & \text { if } g(x) \geq 0 \\
f_{-}(x) & \text { if } g(x)<0\end{cases}
\end{gathered}
$$

$\begin{aligned}\left\langle\nabla g(x) ; f_{+}(x)\right\rangle \times\left\langle\nabla g(x) ; f_{-}(x)\right\rangle>0 & \langle\nabla g(y) ; f(y)\rangle=\left.\frac{d g[x(t)]}{d t}\right|_{t=t_{*}} \\ & \text { if } \dot{x}=f(x), x\left(t_{*}\right)=y\end{aligned}$

$$
\text { if } \dot{x}=f(x), x\left(t_{*}\right)=y
$$

Toy example

$\dot{x}=u \in \mathbb{R}$, objective: $x \rightarrow 0$ control law: $u=-\mathbf{s g n} x$

$\dot{x}= \begin{cases}-1 & \text { if } x \geq \varepsilon \\ -\frac{x}{\varepsilon} & \text { if }-\varepsilon<x<\varepsilon \\ 1 & \text { if } x \leq-\varepsilon\end{cases}$

General case

$$
\begin{gathered}
\dot{x}=a(x)+b(x) u, x \in \mathbb{R}^{n}, u \in \mathbb{R}, \quad u=u(x):= \begin{cases}u_{+} & \text {if } g(x) \geq 0 \\
u_{-} & \text {if } g(x)<0\end{cases} \\
\dot{x}=f(x):= \begin{cases}f_{+}(x) & \text { if } g(x) \geq 0 \\
f_{-}(x) & \text { if } g(x)<0\end{cases}
\end{gathered}
$$

$$
\begin{aligned}
& \langle\nabla g(y) ; f(y)\rangle=\left.\frac{d g[x(t)]}{d t}\right|_{t=t_{*}} \\
& \text { if } \dot{x}=f(x), x\left(t_{*}\right)=y
\end{aligned}
$$

Toy example
$\dot{x}=u \in \mathbb{R}$, objective: $x \rightarrow 0$ control law: $u=-\mathbf{s g n} x$

$\dot{x}= \begin{cases}-1 & \text { if } x \geq \varepsilon \\ -\frac{x}{\varepsilon} & \text { if }-\varepsilon<x<\varepsilon \\ 1 & \text { if } x \leq-\varepsilon\end{cases}$

General case

$$
\begin{gathered}
\dot{x}=a(x)+b(x) u, x \in \mathbb{R}^{n}, u \in \mathbb{R}, \quad u=u(x):= \begin{cases}u_{+} & \text {if } g(x) \geq 0, \\
u_{-} & \text {if } g(x)<0\end{cases} \\
\dot{x}=f(x):= \begin{cases}f_{+}(x) & \text { if } g(x) \geq 0 \\
f_{-}(x) & \text { if } g(x)<0\end{cases}
\end{gathered}
$$

$\lim _{y \rightarrow x, g(y)>0} \frac{d g}{d t} \times \lim _{y \rightarrow x, g(y)<0} \frac{d g}{d t}>0 \quad \lim _{\substack{y(\rightarrow x \\ g(y)>0}} \frac{d g}{d t}>0, \lim _{\substack{y \rightarrow x \\ g(y)<0}} \frac{d g}{d t}<0$

Toy example

$\dot{x}=u \in \mathbb{R}$, objective: $x \rightarrow 0$ control law: $u=-\mathbf{s g n} x$

$\dot{x}= \begin{cases}-1 & \text { if } x \geq \varepsilon \\ -\frac{x}{\varepsilon} & \text { if }-\varepsilon<x<\varepsilon \\ 1 & \text { if } x \leq-\varepsilon\end{cases}$

General case

$$
\begin{gathered}
\dot{x}=a(x)+b(x) u, x \in \mathbb{R}^{n}, u \in \mathbb{R}, \quad u=u(x):= \begin{cases}u_{+} & \text {if } g(x) \geq 0, \\
u_{-} & \text {if } g(x)<0\end{cases} \\
\dot{x}=f(x):= \begin{cases}f_{+}(x) & \text { if } g(x) \geq 0 \\
f_{-}(x) & \text { if } g(x)<0\end{cases}
\end{gathered}
$$

$\lim _{y \rightarrow x, g(y)>0} \frac{d g}{d t} \times \lim _{y \rightarrow x, g(y)<0} \frac{d g}{d t}>0 \quad \lim _{\substack{y \rightarrow x \\ g(y)>0}} \frac{d g}{d t}>0, \lim _{\substack{y \rightarrow x \\ g(y)<0}} \frac{d g}{d t}<0 \lim _{\substack{y \rightarrow x \\ g(y)>0}} \frac{d g}{d t}<0, \lim _{\substack{y \rightarrow x \\ g(y)<0}} \frac{d g}{d t}>0$
$D(x, y) \in \mathbb{R}$ unknown unimodal scalar field
Robot measures only the field value d at its current location

$D(x, y) \in \mathbb{R}$ unknown unimodal scalar field

Primary constraints

- Constant speed $v>0$
- Control by a rudder: sets up the angular velocity of rotation ω
- Constraints on this velocity $|\omega| \leq \bar{\omega}$ $\dot{x}=v \cos \theta, \dot{y}=v \sin \theta, \dot{\theta}=\omega$

Robot measures only the field value d at its current location
$D(x, y) \in \mathbb{R}$ unknown unimodal scalar field

Primary constraints

- Constant speed $v>0$
- Control by a rudder: sets up the angular velocity of rotation ω
- Constraints on this velocity $|\omega| \leq \bar{\omega}$ $\dot{x}=v \cos \theta, \dot{y}=v \sin \theta, \dot{\theta}=\omega$

Robot measures only the field value d at its current location

$D(x, y) \in \mathbb{R}$ unknown unimodal scalar field

Primary constraints

- Constant speed $v>0$
- Control by a rudder: sets up the angular velocity of rotation ω
- Constraints on this velocity $|\omega| \leq \bar{\omega}$ $\dot{x}=v \cos \theta, \dot{y}=v \sin \theta, \dot{\theta}=\omega$

Description of the path

Path $p=(x, y) ; p=p(s) \in \mathbb{R}^{2}$, where s is the natural parameter (arc length)

Robot measures only the field value d at its current location

$$
D(x, y) \in \mathbb{R} \text { unknown unimodal scalar field }
$$

Robot measures only the field value d at its current location

Primary constraints

O Constant speed $v>0$

- Control by a rudder: sets up the angular velocity of rotation ω
Constraints on this velocity $|\omega| \leq \bar{\omega}$ $\dot{x}=v \cos \theta, \dot{y}=v \sin \theta, \dot{\theta}=\omega$

Description of the path
Path $p=(x, y) ; p=p(s) \in \mathbb{R}^{2}$, where s is the natural parameter (arc length)

Robot measures only the field value d at its current location

Primary constraints

O Constant speed $v>0$

- Control by a rudder: sets up the angular velocity of rotation ω
Constraints on this velocity $|\omega| \leq \bar{\omega}$

$$
\dot{x}=v \cos \theta, \dot{y}=v \sin \theta, \dot{\theta}=\omega
$$

Description of the path

Path $p=(x, y) ; p=p(s) \in \mathbb{R}^{2}$, where s is the natural parameter (arc length)

$$
D(x, y) \in \mathbb{R} \text { unknown unimodal scalar field }
$$

Robot measures only the field value d at its current location

Primary constraints

O Constant speed $v>0$

- Control by a rudder: sets up the angular velocity of rotation ω
- Constraints on this velocity $|\omega| \leq \bar{\omega}$

$$
D(x, y) \in \mathbb{R} \text { unknown unimodal scalar field }
$$

Frenet-Serrat frame

$$
\dot{x}=v \cos \theta, \dot{y}=v \sin \theta, \dot{\theta}=\omega
$$

Description of the path

Path $p=(x, y) ; p=p(s) \in \mathbb{R}^{2}$, where s is the natural parameter (arc length)

Robot measures only the field value d at its current location

Primary constraints

O Constant speed $v>0$

- Control by a rudder: sets up the angular velocity of rotation ω
Constraints on this velocity $|\omega| \leq \bar{\omega}$

$$
D(x, y) \in \mathbb{R} \text { unknown unimodal scalar field }
$$

Frenet-Serrat frame

$$
\dot{x}=v \cos \theta, \dot{y}=v \sin \theta, \dot{\theta}=\omega
$$

Description of the path

Path $p=(x, y) ; p=p(s) \in \mathbb{R}^{2}$, where s is the natural parameter (arc length)
$\vec{\tau}(s)=\frac{d p(s)}{d s}-$ unit tangent vector

Robot measures only the field value d at its current location

Primary constraints

- Constant speed $v>0$
- Control by a rudder: sets up the angular velocity of rotation ω

Constraints on this velocity $|\omega| \leq \bar{\omega}$ $\dot{x}=v \cos \theta, \dot{y}=v \sin \theta, \dot{\theta}=\omega$

Description of the path
Path $p=(x, y) ; p=p(s) \in \mathbb{R}^{2}$, where s is the natural parameter (arc
length)

- $\vec{\tau}(s)=\frac{d p(s)}{d s}-$ unit tangent vector

Frenet-Serrat frame

Paths trackable by the robot

Robot measures only the field value d at its current location

Primary constraints

- Constant speed $v>0$
- Control by a rudder: sets up the angular velocity of rotation ω

Constraints on this velocity $|\omega| \leq \bar{\omega}$ $\dot{x}=v \cos \theta, \dot{y}=v \sin \theta, \dot{\theta}=\omega$

Description of the path
Path $p=(x, y) ; p=p(s) \in \mathbb{R}^{2}$, where s is the natural parameter (arc length)
$\vec{\tau}(s)=\frac{d p(s)}{d s}-$ unit tangent vector
$\frac{d \theta_{\tau}(s)}{d s}=\varkappa(s)-$ signed curvature

$D(x, y) \in \mathbb{R}$ unknown unimodal scalar field

Paths trackable by the robot

$$
r(t)=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=p[s(t)]
$$

Robot measures only the field value d at its current location

Primary constraints

- Constant speed $v>0$
- Control by a rudder: sets up the angular velocity of rotation ω

Constraints on this velocity $|\omega| \leq \bar{\omega}$ $\dot{x}=v \cos \theta, \dot{y}=v \sin \theta, \dot{\theta}=\omega$

$D(x, y) \in \mathbb{R}$ unknown unimodal scalar field

Frenet-Serrat frame
Primary constraints
Constant speed $v>0$
Control by a rudder: sets up the
angular velocity of rotation ω
Constraints on this velocity $|\omega| \leq \bar{\omega}$
$\dot{x}=v \cos \theta, \dot{y}=v \sin \theta, \dot{\theta}=\omega$

Description of the path

Path $p=(x, y) ; p=p(s) \in \mathbb{R}^{2}$, where s is the natural parameter (arc length)

- $\vec{\tau}(s)=\frac{d p(s)}{d s}-$ unit tangent vector
$\frac{d \theta_{\tau}(s)}{d s}=\varkappa(s)-$ signed curvature

Robot measures only the field value d at its current location

Primary constraints

- Constant speed $v>0$
- Control by a rudder: sets up the angular velocity of rotation ω

Constraints on this velocity $|\omega| \leq \bar{\omega}$ $\dot{x}=v \cos \theta, \dot{y}=v \sin \theta, \dot{\theta}=\omega$

Description of the path
Path $p=(x, y) ; p=p(s) \in \mathbb{R}^{2}$, where s is the natural parameter (arc length)

- $\vec{\tau}(s)=\frac{d p(s)}{d s}-$ unit tangent vector
$\frac{d \theta_{\tau}(s)}{d s}=\varkappa(s)-$ signed curvature

$D(x, y) \in \mathbb{R}$ unknown unimodal scalar field

Frenet-Serrat frame

Paths trackable by the robot
$r(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]=p[s(t)] \Leftrightarrow r(0)=p[s(0)]$ and $\dot{r}(t)=\frac{d}{d t} p[s(t)] \forall t \geq 0 \quad \dot{s}(t) \equiv \pm v$

Robot measures only the field value d at its current location

Primary constraints

- Constant speed $v>0$
- Control by a rudder: sets up the angular velocity of rotation ω

Constraints on this velocity $|\omega| \leq \bar{\omega}$ $\dot{x}=v \cos \theta, \dot{y}=v \sin \theta, \dot{\theta}=\omega$

Description of the path
Path $p=(x, y) ; p=p(s) \in \mathbb{R}^{2}$, where s is the natural parameter (arc length)

- $\vec{\tau}(s)=\frac{d p(s)}{d s}-$ unit tangent vector
$\frac{d \theta_{\tau}(s)}{d s}=\varkappa(s)-$ signed curvature

Frenet-Serrat frame

Paths trackable by the robot

$$
\begin{gathered}
r(t)=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=p[s(t)] \Leftrightarrow r(0)=p[s(0)] \text { and } \dot{r}(t)=\frac{d}{d t} p[s(t)] \forall t \geq 0 \quad \dot{s}(t) \equiv \pm v \\
\dot{r}(t)=\left[\begin{array}{l}
\dot{x}(t) \\
\dot{y}(t)
\end{array}\right]=v\left[\begin{array}{l}
\cos \theta(t) \\
\sin \theta(t)
\end{array}\right] \quad=\frac{d p}{d s} \dot{s}= \pm \vec{\tau} v= \pm v\left[\begin{array}{l}
\cos \theta \tau[s(t)] \\
\sin \theta_{\tau}[s(t)]
\end{array}\right]
\end{gathered}
$$

Primary constraints

O Constant speed $v>0$

- Control by a rudder: sets up the angular velocity of rotation ω

Constraints on this velocity $|\omega| \leq \bar{\omega}$ $\dot{x}=v \cos \theta, \dot{y}=v \sin \theta, \dot{\theta}=\omega$

Description of the path
Path $p=(x, y) ; p=p(s) \in \mathbb{R}^{2}$, where s is the natural parameter (arc length)
$\vec{\tau}(s)=\frac{d p(s)}{d s}-$ unit tangent vector
$\frac{d \theta_{\tau}(s)}{d s}=\varkappa(s)-$ signed curvature

Robot measures only the field value d at its current location

$D(x, y) \in \mathbb{R}$ unknown unimodal scalar field

Frenet-Serrat frame

Paths trackable by the robot

$$
\begin{gathered}
r(t)=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=p[s(t)] \Leftrightarrow r(0)=p[s(0)] \text { and } \dot{r}(t)=\frac{d}{d t} p[s(t)] \forall t \geq 0 \quad \dot{s}(t) \equiv \pm v \\
\dot{r}(t)=\left[\begin{array}{l}
\dot{x}(t) \\
\dot{y}(t)
\end{array}\right]=v\left[\begin{array}{l}
\cos \theta(t) \\
\sin \theta(t)
\end{array}\right] \quad \frac{d}{d t} p[s(t)]=\frac{d p}{d s} \dot{s}= \pm \vec{\tau} v= \pm v\left[\begin{array}{c}
\cos \theta_{\tau}[s(t)] \\
\sin \theta_{\tau}[s(t)]
\end{array}\right]
\end{gathered}
$$

Robot measures only the field value d at its current location

Primary constraints

- Constant speed $v>0$
- Control by a rudder: sets up the angular velocity of rotation ω
- Constraints on this velocity $|\omega| \leq \bar{\omega}$ $\dot{x}=v \cos \theta, \dot{y}=v \sin \theta, \dot{\theta}=\omega$

Description of the path
Path $p=(x, y) ; p=p(s) \in \mathbb{R}^{2}$, where s is the natural parameter (arc length)

$D(x, y) \in \mathbb{R}$ unknown unimodal scalar field

Frenet-Serrat frame

Paths trackable by the robot

$$
\begin{gathered}
r(t)=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=p[s(t)] \Leftrightarrow r(0)=p[s(0)] \text { and } \dot{r}(t)=\frac{d}{d t} p[s(t)] \forall t \geq 0 \quad \dot{s}(t) \equiv \pm v \\
\dot{r}(t)=\left[\begin{array}{l}
\dot{x}(t) \\
\dot{y}(t)
\end{array}\right]=v\left[\begin{array}{l}
\cos \theta(t) \\
\sin \theta(t)
\end{array}\right] \quad \frac{d}{d t} p[s(t)]=\frac{d p}{d s} \dot{s}= \pm \vec{\tau} v= \pm v\left[\begin{array}{c}
\cos \theta_{\tau}[s(t)] \\
\sin \theta_{\tau}[s(t)]
\end{array}\right]
\end{gathered}
$$

trackability $\Leftrightarrow \exists s(\cdot)$ s.t. $\theta(t):= \pm \theta_{\tau}[s(t)]$ meets the limits on the angular velocity
$\vec{\tau}(s)=\frac{d p(s)}{d s}-$ unit tangent vector
$\frac{d \theta_{\tau}(s)}{d s}=\varkappa(s)-$ signed curvature

Primary constraints

- Constant speed $v>0$
- Control by a rudder: sets up the angular velocity of rotation ω
Constraints on this velocity $|\omega| \leq \bar{\omega}$ $\dot{x}=v \cos \theta, \dot{y}=v \sin \theta, \dot{\theta}=\omega$

Description of the path
Path $p=(x, y) ; p=p(s) \in \mathbb{R}^{2}$, where s is the natural parameter (arc length)
$\vec{\tau}(s)=\frac{d p(s)}{d s}-$ unit tangent vector
$\frac{d \theta_{\tau}(s)}{d s}=\varkappa(s)-$ signed curvature

Robot measures only the field value d at its current location

$D(x, y) \in \mathbb{R}$ unknown unimodal scalar field

Paths trackable by the robot

$$
\begin{gathered}
r(t)=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=p[s(t)] \Leftrightarrow r(0)=p[s(0)] \text { and } \dot{r}(t)=\frac{d}{d t} p[s(t)] \forall t \geq 0 \quad \dot{s}(t) \equiv \pm v \\
\dot{r}(t)=\left[\begin{array}{l}
\dot{x}(t) \\
\dot{y}(t)
\end{array}\right]=v\left[\begin{array}{l}
\cos \theta(t) \\
\sin \theta(t)
\end{array}\right] \quad \frac{d}{d t} p[s(t)]=\frac{d p}{d s} \dot{s}= \pm \vec{\tau} v= \pm v\left[\begin{array}{c}
\cos \theta_{\tau}[s(t)] \\
\sin \theta_{\tau}[s(t)]
\end{array}\right]
\end{gathered}
$$

trackability $\Leftrightarrow \exists s(\cdot)$ s.t. $\theta(t):= \pm \theta_{\tau}[s(t)]$ meets the limits on the angular velocity

$$
\Leftrightarrow|\dot{\theta}(t)|=\left|\frac{d \theta_{\tau}(s)}{d s}\right||\dot{s}|=|\varkappa| v \leq \bar{\omega}
$$

Robot measures only the field value d at its current location

Primary constraints

Constant speed $v>0$

- Control by a rudder: sets up the angular velocity of rotation ω
- Constraints on this velocity $|\omega| \leq \bar{\omega}$

$$
\dot{x}=v \cos \theta, \dot{y}=v \sin \theta, \dot{\theta}=\omega
$$

Description of the path

Path $p=(x, y) ; p=p(s) \in \mathbb{R}^{2}$, where s is the natural parameter (arc length)
$\vec{\tau}(s)=\frac{d p(s)}{d s}-$ unit tangent vector
$\frac{d \theta_{\tau}(s)}{d s}=\varkappa(s)-$ signed curvature

$D(x, y) \in \mathbb{R}$ unknown unimodal scalar field

Frenet-Serrat frame

Paths trackable by the robot

$$
\begin{gathered}
r(t)=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=p[s(t)] \Leftrightarrow r(0)=p[s(0)] \text { and } \dot{r}(t)=\frac{d}{d t} p[s(t)] \forall t \geq 0 \quad \dot{s}(t) \equiv \pm v \\
\dot{r}(t)=\left[\begin{array}{l}
\dot{x}(t) \\
\dot{y}(t)
\end{array}\right]=v\left[\begin{array}{l}
\cos \theta(t) \\
\sin \theta(t)
\end{array}\right] \quad \frac{d}{d t} p[s(t)]=\frac{d p}{d s} \dot{s}= \pm \vec{\tau} v= \pm v\left[\begin{array}{l}
\cos \theta_{\tau}[s(t)] \\
\sin \theta_{\tau}[s(t)]
\end{array}\right]
\end{gathered}
$$

trackability $\Leftrightarrow \exists s(\cdot)$ s.t. $\theta(t):= \pm \theta_{\tau}[s(t)]$ meets the limits on the angular velocity

$$
\Leftrightarrow|\dot{\theta}(t)|=\left|\frac{d \theta_{\tau}(s)}{d s}\right||\dot{s}|=|\varkappa| v \leq \bar{\omega}
$$

$\Leftrightarrow|\varkappa| \leq\left.\frac{\bar{\omega}}{v} \Leftrightarrow \varkappa\right|^{-1} \geq R_{\min }:=\frac{v}{\bar{\omega}} \quad$ curvature radius

Primary constraints

Constant speed $v>0$

- Control by a rudder: sets up the angular velocity of rotation ω
- Constraints on this velocity $|\omega| \leq \bar{\omega}$

$$
\begin{gathered}
\dot{\boldsymbol{r}}=v \overrightarrow{\boldsymbol{e}}(\theta), \dot{\theta}=\omega \\
\boldsymbol{r}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \overrightarrow{\boldsymbol{e}}=\left[\begin{array}{l}
\cos \theta \\
\sin \theta
\end{array}\right]
\end{gathered}
$$

Robot measures only the field value d at its current location

Primary constraints

Constant speed $v>0$
Control by a rudder: sets up the angular velocity of rotation ω

- Constraints on this velocity $|\omega| \leq \bar{\omega}$

$$
\begin{gathered}
\dot{\boldsymbol{r}}=v \overrightarrow{\boldsymbol{e}}(\theta), \dot{\theta}=\omega \\
\boldsymbol{r}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \vec{e}=\left[\begin{array}{l}
\cos \theta \\
\sin \theta
\end{array}\right]
\end{gathered}
$$

$D(x, y) \in \mathbb{R}$ unknown
unimodal scalar field

Robot measures only the field value d at its current location

Primary constraints

O Constant speed $v>0$
Control by a rudder: sets up the angular velocity of rotation ω

- Constraints on this velocity $|\omega| \leq \bar{\omega}$

$$
\begin{gathered}
\dot{r}=v \vec{e}(\theta), \dot{\theta}=\omega \\
\boldsymbol{r}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \vec{e}=\left[\begin{array}{l}
\cos \theta \\
\sin \theta
\end{array}\right]
\end{gathered}
$$

$D(x, y) \in \mathbb{R}$ unknown
unimodal scalar field

Robot measures only the field value d at its current location

State variables and discontinuity surface

$$
\text { state }(\boldsymbol{r}, \theta)
$$

$$
g=(\boldsymbol{r}, \theta)=D(\boldsymbol{r})
$$

discontinuity is described by
$g(\boldsymbol{r}, \theta):=\underbrace{v\langle\nabla D(\boldsymbol{r}) ; \vec{e}(\theta)\rangle}_{\dot{d}}+\mu \chi\left[d(x, y)-d_{0}\right]=0$

Primary constraints

O Constant speed $v>0$
Control by a rudder: sets up the angular velocity of rotation ω

- Constraints on this velocity $|\omega| \leq \bar{\omega}$

$$
\begin{gathered}
\dot{r}=v \vec{e}(\theta), \dot{\theta}=\omega \\
\boldsymbol{r}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \vec{e}=\left[\begin{array}{l}
\cos \theta \\
\sin \theta
\end{array}\right]
\end{gathered}
$$

$D(x, y) \in \mathbb{R}$ unknown
unimodal scalar field

Robot measures only the field value d at its current location

State variables and discontinuity surface

$$
\begin{gathered}
\text { state }(\boldsymbol{r}, \theta) \\
g=(\boldsymbol{r}, \theta)=D(\boldsymbol{r})
\end{gathered}
$$

discontinuity is described by
$g(\boldsymbol{r}, \theta):=\underbrace{v\langle\nabla D(\boldsymbol{r}) ; \vec{e}(\theta)\rangle}_{\dot{d}}+\mu \chi\left[d(x, y)-d_{0}\right]=0$

Primary constraints

Constant speed $v>0$
Control by a rudder: sets up the angular velocity of rotation ω

- Constraints on this velocity $|\omega| \leq \bar{\omega}$

$$
\begin{gathered}
\dot{\boldsymbol{r}}=v \overrightarrow{\boldsymbol{e}}(\theta), \dot{\theta}=\omega \\
\boldsymbol{r}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \vec{e}=\left[\begin{array}{l}
\cos \theta \\
\sin \theta
\end{array}\right]
\end{gathered}
$$

$D(x, y) \in \mathbb{R}$ unknown
unimodal scalar field

Robot measures only the field value d at its current location

State variables and discontinuity surface

$$
\text { state }(\boldsymbol{r}, \theta)
$$

$$
g=(\boldsymbol{r}, \theta)=D(\boldsymbol{r})
$$

discontinuity is described by
$g(\boldsymbol{r}, \theta):=\underbrace{v\langle\nabla D(\boldsymbol{r}) ; \vec{e}(\theta)\rangle}_{\dot{d}}+\mu \chi\left[d(x, y)-d_{0}\right]=0$

Be realistic, please
$\bar{\chi}:=\sup _{d}|\chi(d)|<\infty$

Primary constraints

Constant speed $v>0$
Control by a rudder: sets up the angular velocity of rotation ω

- Constraints on this velocity $|\omega| \leq \bar{\omega}$

$$
\begin{gathered}
\dot{\boldsymbol{r}}=v \overrightarrow{\boldsymbol{e}}(\theta), \dot{\theta}=\omega \\
\boldsymbol{r}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \vec{e}=\left[\begin{array}{l}
\cos \theta \\
\sin \theta
\end{array}\right]
\end{gathered}
$$

$D(x, y) \in \mathbb{R}$ unknown
unimodal scalar field

Robot measures only the field value d at its current location

State variables and discontinuity surface

$$
\begin{gathered}
\text { state }(\boldsymbol{r}, \theta) \\
g=(\boldsymbol{r}, \theta)=D(\boldsymbol{r})
\end{gathered}
$$

discontinuity is described by
$g(\boldsymbol{r}, \theta):=\underbrace{v\langle\nabla D(\boldsymbol{r}) ; \vec{e}(\theta)\rangle}_{\dot{d}}+\mu \chi\left[d(x, y)-d_{0}\right]=0$

Be realistic, please
$\bar{\chi}:=\sup _{d}|\chi(d)|<\infty$

- $\|\nabla D\| \geq b_{\nabla}>0$ in working zone

Primary constraints

Constant speed $v>0$
Control by a rudder: sets up the angular velocity of rotation ω

- Constraints on this velocity $|\omega| \leq \bar{\omega}$

$$
\begin{gathered}
\dot{\boldsymbol{r}}=v \overrightarrow{\boldsymbol{e}}(\theta), \dot{\theta}=\omega \\
\boldsymbol{r}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \vec{e}=\left[\begin{array}{l}
\cos \theta \\
\sin \theta
\end{array}\right]
\end{gathered}
$$

$D(x, y) \in \mathbb{R}$ unknown
unimodal scalar field

Robot measures only the field value d at its current location

State variables and discontinuity surface

$$
\begin{gathered}
\text { state }(\boldsymbol{r}, \theta) \\
g=(\boldsymbol{r}, \theta)=D(\boldsymbol{r})
\end{gathered}
$$

discontinuity is described by
$g(\boldsymbol{r}, \theta):=\underbrace{v\langle\nabla D(\boldsymbol{r}) ; \vec{e}(\theta)\rangle}_{\dot{d}}+\mu \chi\left[d(x, y)-d_{0}\right]=0$

Be realistic, please
$\bar{\chi}:=\sup _{d}|\chi(d)|<\infty$

- $\|\nabla D\| \geq b_{\nabla}>0$ in working zone
$\dot{d}=-\mu \chi \Rightarrow \mu|\chi| \leq v\|\nabla D\|$

Primary constraints

Constant speed $v>0$
Control by a rudder: sets up the angular velocity of rotation ω

- Constraints on this velocity $|\omega| \leq \bar{\omega}$

$$
\begin{gathered}
\dot{\boldsymbol{r}}=v \overrightarrow{\boldsymbol{e}}(\theta), \dot{\theta}=\omega \\
\boldsymbol{r}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \vec{e}=\left[\begin{array}{l}
\cos \theta \\
\sin \theta
\end{array}\right]
\end{gathered}
$$

$D(x, y) \in \mathbb{R}$ unknown
unimodal scalar field

Robot measures only the field value d at its current location

State variables and discontinuity surface

$$
\begin{gathered}
\text { state }(\boldsymbol{r}, \theta) \\
g=(\boldsymbol{r}, \theta)=D(\boldsymbol{r})
\end{gathered}
$$

discontinuity is described by
$g(\boldsymbol{r}, \theta):=\underbrace{v\langle\nabla D(\boldsymbol{r}) ; \vec{e}(\theta)\rangle}_{\dot{d}}+\mu \chi\left[d(x, y)-d_{0}\right]=0$

Be realistic, please
$\bar{\chi}:=\sup _{d}|\chi(d)|<\infty$

- $\|\nabla D\| \geq b_{\nabla}>0$ in working zone
$\dot{d}=-\mu \chi \Rightarrow \mu|\chi|<v\|\nabla D\|$

Primary constraints

Constant speed $v>0$
Control by a rudder: sets up the angular velocity of rotation ω

- Constraints on this velocity $|\omega| \leq \bar{\omega}$

$$
\begin{gathered}
\dot{r}=v \vec{e}(\theta), \dot{\theta}=\omega \\
\boldsymbol{r}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \vec{e}=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]
\end{gathered}
$$

Be realistic, please
$\bar{\chi}:=\sup _{d}|\chi(d)|<\infty$
$\|\nabla D\| \geq b_{\nabla}>0$ in working zone
$\dot{d}=-\mu \chi \Rightarrow \mu|\chi|<v\|\nabla D\|$
$D(x, y) \in \mathbb{R}$ unknown
unimodal scalar field

Robot measures only the field value d at its current location

State variables and discontinuity surface

$$
\begin{gathered}
\text { state }(\boldsymbol{r}, \theta) \\
g=(\boldsymbol{r}, \theta)=D(\boldsymbol{r})
\end{gathered}
$$

discontinuity is described by
$g(\boldsymbol{r}, \theta):=\underbrace{v\langle\nabla D(\boldsymbol{r}) ; \vec{e}(\theta)\rangle}_{\dot{d}}+\mu \chi\left[d(x, y)-d_{0}\right]=0$
Residing: $\dot{d}=-\mu \chi$

Primary constraints

Constant speed $v>0$
Control by a rudder: sets up the angular velocity of rotation ω

Constraints on this velocity $|\omega| \leq \bar{\omega}$

$$
\dot{\boldsymbol{r}}=v \overrightarrow{\boldsymbol{e}}(\theta), \dot{\theta}=\omega
$$

$$
\boldsymbol{r}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \vec{e}=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]
$$

Be realistic, please
$\bar{\chi}:=\sup _{d}|\chi(d)|<\infty$
$\|\nabla D\| \geq b_{\nabla}>0$ in working zone
$\dot{d}=-\mu \chi \Rightarrow \mu|\chi|<v\|\nabla D\|$
$D(x, y) \in \mathbb{R}$ unknown unimodal scalar field

Robot measures only the field value d at its current location

State variables and discontinuity surface

$$
\text { state }(\boldsymbol{r}, \theta)
$$

$$
g=(\boldsymbol{r}, \theta)=D(\boldsymbol{r})
$$

discontinuity is described by

$$
g(\boldsymbol{r}, \theta):=\underbrace{v\langle\nabla D(\boldsymbol{r}) ; \vec{e}(\theta)\rangle}_{\dot{d}}+\mu \chi\left[d(x, y)-d_{0}\right]=0
$$

$$
\begin{aligned}
& \left|v_{n}\right|=\left|\left\langle v \vec{e} ; \frac{\nabla D}{\|\nabla D\|}\right\rangle\right|= \\
& \frac{v|\langle\nabla D ; \vec{e}\rangle|}{\|\nabla D\|}=\frac{|\dot{d}|}{\|\nabla D\|}<v
\end{aligned}
$$

Primary constraints

Constant speed $v>0$
Control by a rudder: sets up the angular velocity of rotation ω - Constraints on this velocity $|\omega| \leq \bar{\omega}$

$$
\begin{gathered}
\dot{r}=v \vec{e}(\theta), \dot{\theta}=\omega \\
\boldsymbol{r}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \vec{e}=\left[\begin{array}{l}
\cos \theta \\
\sin \theta
\end{array}\right]
\end{gathered}
$$

Be realistic, please
$\bar{\chi}:=\sup _{d}|\chi(d)|<\infty$
$\|\nabla D\| \geq b_{\nabla}>0$ in working zone
$\dot{d}=-\mu \chi \Rightarrow \mu|\chi|<v\|\nabla D\|$
$D(x, y) \in \mathbb{R}$ unknown unimodal scalar field

Robot measures only the field value d at its current location

State variables and discontinuity surface

$$
\text { state }(\boldsymbol{r}, \theta)
$$

$$
g=(\boldsymbol{r}, \theta)=D(\boldsymbol{r})
$$

discontinuity is described by
$g(\boldsymbol{r}, \theta):=\underbrace{v\langle\nabla D(\boldsymbol{r}) ; \vec{e}(\theta)\rangle}_{\dot{d}}+\mu \chi\left[d(x, y)-d_{0}\right]=0$
Residing: $\dot{d}=-\mu \chi$

$v_{\tau}= \pm \underbrace{\sqrt{v^{2}-v_{n}^{2}}}_{\geq \eta>0}$

Primary constraints

Constant speed $v>0$
Control by a rudder: sets up the angular velocity of rotation ω - Constraints on this velocity $|\omega| \leq \bar{\omega}$

$$
\begin{gathered}
\dot{\boldsymbol{r}}=v \vec{e}(\theta), \dot{\theta}=\omega \\
\boldsymbol{r}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \vec{e}=\left[\begin{array}{l}
\cos \theta \\
\sin \theta
\end{array}\right]
\end{gathered}
$$

Be realistic, please
$\bar{\chi}:=\sup _{d}|\chi(d)|<\infty$
$\|\nabla D\| \geq b_{\nabla}>0$ in working zone
$\dot{d}=-\mu \chi \Rightarrow \mu|\chi|<v\|\nabla D\|$
$D(x, y) \in \mathbb{R}$ unknown unimodal scalar field

Control law

Residing: $\dot{d}=-\mu \chi$

$v_{\tau}= \pm \underbrace{\sqrt{v^{2}-v_{n}^{2}}}_{\geq \eta>0}$

Robot measures only the field value d at its current location

State variables and discontinuity surface

$$
\text { state }(\boldsymbol{r}, \theta)
$$

$$
g=(\boldsymbol{r}, \theta)=D(\boldsymbol{r})
$$

discontinuity is described by

$$
g(\boldsymbol{r}, \theta):=\underbrace{v\langle\nabla D(\boldsymbol{r}) ; \vec{e}(\theta)\rangle}_{\dot{d}}+\mu \chi\left[d(x, y)-d_{0}\right]=0
$$

Primary constraints

Constant speed $v>0$
Control by a rudder: sets up the angular velocity of rotation ω - Constraints on this velocity $|\omega| \leq \bar{\omega}$

$$
\begin{gathered}
\dot{\boldsymbol{r}}=v \vec{e}(\theta), \dot{\theta}=\omega \\
\boldsymbol{r}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \vec{e}=\left[\begin{array}{l}
\cos \theta \\
\sin \theta
\end{array}\right]
\end{gathered}
$$

Be realistic, please
$\bar{\chi}:=\sup _{d}|\chi(d)|<\infty$
$\|\nabla D\| \geq b_{\nabla}>0$ in working zone
$\dot{d}=-\mu \chi \Rightarrow \mu|\chi|<v\|\nabla D\|$
$D(x, y) \in \mathbb{R}$ unknown unimodal scalar field

Control law

$$
\omega=-\bar{\omega} \operatorname{sgn}\left[\dot{d}+\mu \chi\left(d-d_{0}\right)\right]
$$

$g>0 \Rightarrow \omega=-\bar{\omega}$

$g<0 \Rightarrow \omega=\bar{\omega}$

Residing: $\dot{d}=-\mu \chi$

$v_{\tau}= \pm \underbrace{\sqrt{v^{2}-v_{n}^{2}}}_{\geq \eta>0}$

Robot measures only the field value d at its current location

State variables and discontinuity surface

$$
\text { state }(\boldsymbol{r}, \theta)
$$

$$
g=(\boldsymbol{r}, \theta)=D(\boldsymbol{r})
$$

discontinuity is described by

$$
g(\boldsymbol{r}, \theta):=\underbrace{v\langle\nabla D(\boldsymbol{r}) ; \vec{e}(\theta)\rangle}_{\dot{d}}+\mu \chi\left[d(x, y)-d_{0}\right]=0
$$

Primary constraints

Constant speed $v>0$
Control by a rudder: sets up the angular velocity of rotation ω - Constraints on this velocity $|\omega| \leq \bar{\omega}$

$$
\begin{gathered}
\dot{\boldsymbol{r}}=v \vec{e}(\theta), \dot{\theta}=\omega \\
\boldsymbol{r}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \vec{e}=\left[\begin{array}{l}
\cos \theta \\
\sin \theta
\end{array}\right]
\end{gathered}
$$

Be realistic, please
$\bar{\chi}:=\sup _{d}|\chi(d)|<\infty$
$\|\nabla D\| \geq b_{\nabla}>0$ in working zone
$\dot{d}=-\mu \chi \Rightarrow \mu|\chi|<v\|\nabla D\|$
$D(x, y) \in \mathbb{R}$ unknown unimodal scalar field

Control law

Residing: $\dot{d}=-\mu \chi$

$v_{\tau}= \pm \underbrace{\sqrt{v^{2}-v_{n}^{2}}}_{\geq \eta>0}$

Robot measures only the field value d at its current location

State variables and discontinuity surface

$$
\text { state }(\boldsymbol{r}, \theta)
$$

$$
g=(\boldsymbol{r}, \theta)=D(\boldsymbol{r})
$$

discontinuity is described by

$$
g(\boldsymbol{r}, \theta):=\underbrace{v\langle\nabla D(\boldsymbol{r}) ; \vec{e}(\theta)\rangle}_{\dot{d}}+\mu \chi\left[d(x, y)-d_{0}\right]=0
$$

Control law

$$
\begin{gathered}
\omega=-\bar{\omega} \mathbf{s g n}\left[\dot{d}+\mu \chi\left(d-d_{0}\right)\right]=-\bar{\omega} \mathbf{s g n} g \\
g>0 \Rightarrow \omega=-\bar{\omega} \\
g<0 \Rightarrow \omega=\bar{\omega}
\end{gathered}
$$

State variables and discontinuity surface
\square
state (\boldsymbol{r}, θ)
discontinuity is described by

$$
g(\boldsymbol{r}, \theta):=\underbrace{v\langle\nabla D(\boldsymbol{r}) ; \vec{e}(\theta)\rangle}_{\dot{d}}+\mu \chi\left[d(x, y)-d_{0}\right]=0
$$

$$
\begin{aligned}
& \text { Robot's model } \\
& \dot{\boldsymbol{r}}=v \vec{e}(\theta), \dot{\theta}=\omega
\end{aligned}
$$

$$
\boldsymbol{r}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \vec{e}=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]
$$

State variables and discontinuity surface

$$
\text { state }(\boldsymbol{r}, \theta)
$$

discontinuity is described by

$$
g(\boldsymbol{r}, \theta):=\underbrace{v\langle\nabla D(\boldsymbol{r}) ; \vec{e}(\theta)\rangle}_{\dot{d}}+\mu \chi\left[d(x, y)-d_{0}\right]=0
$$

Control law

$\omega=-\bar{\omega} \mathbf{s g n}\left[\dot{d}+\mu \chi\left(d-d_{0}\right)\right]=-\bar{\omega} \mathbf{s g n} g$

$$
\begin{aligned}
& g>0 \Rightarrow \omega=-\bar{\omega} \\
& g<0 \Rightarrow \omega=\bar{\omega}
\end{aligned}
$$

Two-side repelling

$$
\lim _{(\boldsymbol{r}, \theta) \rightarrow\left(\boldsymbol{r}_{*}, \theta_{*}\right), g>0} \frac{d g}{d t}>0, \lim _{(\boldsymbol{r}, \theta) \rightarrow\left(\boldsymbol{r}_{*}, \theta_{*}\right), g<0} \frac{d g}{d t}<0
$$

$$
\begin{gathered}
\dot{\boldsymbol{r}}=v \vec{e}(\theta), \dot{\theta}=\omega \\
\boldsymbol{r}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \vec{e}=\left[\begin{array}{l}
\cos \theta \\
\sin \theta
\end{array}\right]
\end{gathered}
$$

State variables and discontinuity surface

$$
\text { state }(\boldsymbol{r}, \theta)
$$

$$
g(\boldsymbol{r}, \theta):=\underbrace{\quad \text { discontinuity is described by }}_{\dot{d}} \begin{aligned}
& v\langle\nabla D(\boldsymbol{r}) ; \vec{e}(\theta)\rangle
\end{aligned}+\mu \chi\left[d(x, y)-d_{0}\right]=0
$$

Control law

$\omega=-\bar{\omega} \mathbf{s g n}\left[\dot{d}+\mu \chi\left(d-d_{0}\right)\right]=-\bar{\omega} \mathbf{s g n} g$

$$
\begin{aligned}
& g>0 \Rightarrow \omega=-\bar{\omega} \\
& g<0 \Rightarrow \omega=\bar{\omega}
\end{aligned}
$$

Two-side repelling

$$
\lim _{(\boldsymbol{r}, \theta) \rightarrow\left(\boldsymbol{r}_{*}, \theta_{*}\right), g>0} \frac{d g}{d t}>0, \lim _{(\boldsymbol{r}, \theta) \rightarrow\left(\boldsymbol{r}_{*}, \theta_{*}\right), g<0} \frac{d g}{d t}<0
$$

$$
\begin{aligned}
& \text { Robot's model } \\
& \dot{\boldsymbol{r}}=v \vec{e}(\theta), \dot{\theta}=\omega
\end{aligned}
$$

$\boldsymbol{r}=\left[\begin{array}{l}x \\ y\end{array}\right], \vec{e}=\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right]$

State variables and discontinuity surface

state (\boldsymbol{r}, θ)

discontinuity is described by

Control law

$\omega=-\bar{\omega} \mathbf{s g n}\left[\dot{d}+\mu \chi\left(d-d_{0}\right)\right]=-\bar{\omega} \mathbf{s g n} g$

$$
\begin{aligned}
& g>0 \Rightarrow \omega=-\bar{\omega} \\
& g<0 \Rightarrow \omega=\bar{\omega}
\end{aligned}
$$

$\underset{\rightarrow}{d \theta}=\left[\begin{array}{c}-\sin \theta \\ \cos \theta\end{array}\right]=:$

$$
g(\boldsymbol{r}, \theta):=\underbrace{v\langle\nabla D(\boldsymbol{r}) ; \vec{e}(\theta)\rangle}_{\dot{d}}+\mu \chi\left[d(x, y)-d_{0}\right]=0
$$

Two-side repelling

$$
\lim _{(\boldsymbol{r}, \theta) \rightarrow\left(\boldsymbol{r}_{*}, \theta_{*}\right), g>0} \frac{d g}{d t}>0, \lim _{(\boldsymbol{r}, \theta) \rightarrow\left(\boldsymbol{r}_{*}, \theta_{*}\right), g<0} \frac{d g}{d t}<0
$$

$$
\frac{d g}{d t}=v\left\langle D^{\prime \prime} \dot{\boldsymbol{r}} ; \overrightarrow{\boldsymbol{e}}\right\rangle+v\left\langle\nabla D(\boldsymbol{r}) ; \frac{d \vec{e}}{d \theta} \dot{\theta}\right\rangle+\mu \frac{d \chi}{d t}
$$

$$
\begin{aligned}
& \text { Robot's model } \\
& \dot{\boldsymbol{r}}=v \vec{e}(\theta), \dot{\theta}=\omega
\end{aligned}
$$

$$
\boldsymbol{r}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \vec{e}=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]
$$

State variables and discontinuity surface

$$
\text { state }(\boldsymbol{r}, \theta)
$$

discontinuity is described by

$$
g(\boldsymbol{r}, \theta):=\underbrace{v\langle\nabla D(\boldsymbol{r}) ; \vec{e}(\theta)\rangle}_{\dot{d}}+\mu \chi\left[d(x, y)-d_{0}\right]=0
$$

Control law

$\omega=-\bar{\omega} \mathbf{s g n}\left[\dot{d}+\mu \chi\left(d-d_{0}\right)\right]=-\bar{\omega} \mathbf{s g n} g$

$$
\begin{aligned}
& g>0 \Rightarrow \omega=-\bar{\omega} \\
& g<0 \Rightarrow \omega=\bar{\omega}
\end{aligned}
$$

$$
\frac{d g}{d t}=v^{2}\left\langle D^{\prime \prime} \vec{e} ; \vec{e}\right\rangle+v\left\langle\nabla D(\boldsymbol{r}) ; \frac{d \vec{e}}{d \theta} \dot{\theta}\right\rangle+\mu \frac{d \chi}{d t}
$$

Two-side repelling

$$
\lim _{(\boldsymbol{r}, \theta) \rightarrow\left(\boldsymbol{r}_{*}, \theta_{*}\right), g>0} \frac{d g}{d t}>0, \lim _{(\boldsymbol{r}, \theta) \rightarrow\left(\boldsymbol{r}_{*}, \theta_{*}\right), g<0} \frac{d g}{d t}<0
$$

$$
\dot{r}=v \vec{e}(\theta), \dot{\theta}=\omega
$$

$$
\boldsymbol{r}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \vec{e}=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]
$$

State variables and discontinuity surface

$$
\text { state }(\boldsymbol{r}, \theta)
$$

$$
g(\boldsymbol{r}, \theta):=\underbrace{\quad \begin{array}{c}
\text { discontinuity is described by } \\
v\langle\nabla D(\boldsymbol{r}) ; \vec{e}(\theta)\rangle
\end{array}+\mu \chi\left[d(x, y)-d_{0}\right]=0}_{\dot{d}}
$$

Control law

$\omega=-\bar{\omega} \mathbf{s g n}\left[\dot{d}+\mu \chi\left(d-d_{0}\right)\right]=-\bar{\omega} \mathbf{s g n} g$

$$
g>0 \Rightarrow \omega=-\bar{\omega}
$$

Two-side repelling

$$
\lim _{(\boldsymbol{r}, \theta) \rightarrow\left(\boldsymbol{r}_{*}, \theta_{*}\right), g>0} \frac{d g}{d t}>0, \lim _{(\boldsymbol{r}, \theta) \rightarrow\left(\boldsymbol{r}_{*}, \theta_{*}\right), g<0} \frac{d g}{d t}<0
$$

$$
\dot{r}=v \vec{e}(\theta), \dot{\theta}=\omega
$$

$$
\boldsymbol{r}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \vec{e}=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]
$$

State variables and discontinuity surface

$$
\text { state }(\boldsymbol{r}, \theta)
$$

$$
g(\boldsymbol{r}, \theta):=\underbrace{v\langle\nabla D(\boldsymbol{r}) ; \vec{e}(\theta)\rangle}_{\dot{d}}+\mu \chi\left[d(x, y)-d_{0}\right]=0
$$

Control law

$\omega=-\bar{\omega} \mathbf{s g n}\left[\dot{d}+\mu \chi\left(d-d_{0}\right)\right]=-\bar{\omega} \mathbf{s g n g}$

$$
\begin{aligned}
& g>0 \Rightarrow \omega=-\bar{\omega} \\
& g<0 \Rightarrow \omega=\bar{\omega}
\end{aligned}
$$

Two-side repelling

$$
\lim _{(\boldsymbol{r}, \theta) \rightarrow\left(\boldsymbol{r}_{*}, \theta_{*}\right), g>0} \frac{d g}{d t}>0, \lim _{(\boldsymbol{r}, \theta) \rightarrow\left(\boldsymbol{r}_{*}, \theta_{*}\right), g<0} \frac{d g}{d t}<0
$$

$$
\dot{\boldsymbol{r}}=v \vec{e}(\theta), \dot{\theta}=\omega
$$

$$
\boldsymbol{r}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \vec{e}=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]
$$

State variables and discontinuity surface

$$
\text { state }(\boldsymbol{r}, \theta)
$$

$$
g(\boldsymbol{r}, \theta):=\underbrace{v\langle\nabla D(\boldsymbol{r}) ; \vec{e}(\theta)\rangle}_{\dot{d}}+\mu \chi\left[d(x, y)-d_{0}\right]=0
$$

Control law

Two-side repelling

$$
\lim _{(\boldsymbol{r}, \theta) \rightarrow\left(\boldsymbol{r}_{*}, \theta_{*}\right), g>0} \frac{d g}{d t}>0, \lim _{(\boldsymbol{r}, \theta) \rightarrow\left(\boldsymbol{r}_{*}, \theta_{*}\right), g<0} \frac{d g}{d t}<0
$$

$$
\dot{\boldsymbol{r}}=v \vec{e}(\theta), \dot{\theta}=\omega
$$

$$
\boldsymbol{r}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \vec{e}=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]
$$

State variables and discontinuity surface

$$
\text { state }(\boldsymbol{r}, \theta)
$$

$$
g(\boldsymbol{r}, \theta):=\underbrace{\begin{array}{c}
\text { discontinuity is described by }
\end{array}}_{\dot{d}} \begin{array}{r}
v\langle\nabla D(\boldsymbol{r}) ; \vec{e}(\theta)\rangle
\end{array}+\mu \chi\left[d(x, y)-d_{0}\right]=0
$$

Control law

Two-side repelling

$$
\lim _{(\boldsymbol{r}, \theta) \rightarrow\left(\boldsymbol{r}_{*}, \theta_{*}\right), g>0} \frac{d g}{d t}>0, \lim _{(\boldsymbol{r}, \theta) \rightarrow\left(\boldsymbol{r}_{*}, \theta_{*}\right), g<0} \frac{d g}{d t}<0
$$

$$
\dot{r}=v \vec{e}(\theta), \dot{\theta}=\omega
$$

$$
\boldsymbol{r}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \vec{e}=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]
$$

State variables and discontinuity surface

$$
\text { state }(\boldsymbol{r}, \theta)
$$

$$
g(\boldsymbol{r}, \theta):=\underbrace{\begin{array}{c}
\text { discontinuity is described by } \\
v\langle\nabla D(\boldsymbol{r}) ; \vec{e}(\theta)\rangle
\end{array}+\mu \chi\left[d(x, y)-d_{0}\right]=0}_{\dot{d}}
$$

Control law

$$
\begin{aligned}
& g>0 \Rightarrow \omega=-\bar{\omega} \\
& g<0 \Rightarrow \omega=\bar{\omega}
\end{aligned}
$$

$$
v_{n}=\langle\vec{v} ; \vec{n}\rangle
$$

$$
\frac{d \vec{e}}{d \theta}=\left[\begin{array}{c}
-\sin \theta \\
\cos \theta
\end{array}\right]=:
$$

greater field value

Two-side repelling
$\lim _{(\boldsymbol{r}, \theta) \rightarrow\left(\boldsymbol{r}_{*}, \theta_{*}\right), g>0} \frac{d g}{d t}>0, \lim _{(\boldsymbol{r}, \theta) \rightarrow\left(\boldsymbol{r}_{*}, \theta_{*}\right), g<0} \frac{d g}{d t}<0$

$$
\begin{aligned}
& \frac{d g}{d t}=v^{2}\left\langle D^{\prime \prime} \vec{e} ; \vec{e}\right\rangle+v \omega\left\langle\nabla D(\boldsymbol{r}) ; \vec{e}_{\perp}\right\rangle+\mu \frac{d \chi}{d t} \\
& \stackrel{\mu \approx 0}{\approx} v^{2}\|\nabla D\|\left[\frac{\left\langle D^{\prime \prime} \vec{e} ; \vec{e}\right\rangle}{\|\nabla D\|}+\frac{\omega}{v}\left\langle\frac{\nabla D(\boldsymbol{r})}{\|\nabla D\|} ; \vec{e}_{\perp}\right\rangle\right]
\end{aligned}
$$

$$
\dot{r}=v \vec{e}(\theta), \dot{\theta}=\omega
$$

$$
\boldsymbol{r}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \vec{e}=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]
$$

State variables and discontinuity surface

$$
\text { state }(\boldsymbol{r}, \theta)
$$

$$
g(\boldsymbol{r}, \theta):=\underbrace{\begin{array}{c}
\text { discontinuity is described by } \\
v\langle\nabla D(\boldsymbol{r}) ; \vec{e}(\theta)\rangle
\end{array}+\mu \chi\left[d(x, y)-d_{0}\right]=0}_{\dot{d}}
$$

Control law

$$
v_{n}=\langle\vec{v}, \vec{n}\rangle
$$

$$
\underset{\rightarrow}{\frac{d \vec{e}}{d \theta}}=\left[\begin{array}{c}
-\sin \theta \\
\cos \theta
\end{array}\right]=:
$$ \vec{e}_{\perp}

$$
\begin{gathered}
\frac{d g}{d t}=v^{2}\left\langle D^{\prime \prime} \vec{e} ; \vec{e}\right\rangle+v \omega\left\langle\nabla D(\boldsymbol{r}) ; \vec{e}_{\perp}\right\rangle+\mu \frac{d \chi}{d t} \\
\mu \approx 0 v^{2}\|\nabla D\|\left[\frac{\left\langle D^{\prime \prime} \vec{e} ; \vec{e}\right\rangle}{\|\nabla D\|}-\frac{\bar{\omega}}{v}\left\langle\frac{\nabla D(\boldsymbol{r})}{\|\nabla D\|} ; \vec{e}_{\perp}\right\rangle \boldsymbol{s g n} g\right]
\end{gathered}
$$

$$
\dot{\boldsymbol{r}}=v \vec{e}(\theta), \dot{\theta}=\omega
$$

$$
\boldsymbol{r}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \vec{e}=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]
$$

State variables and discontinuity surface

state (\boldsymbol{r}, θ)

$$
g(\boldsymbol{r}, \theta):=\underbrace{\begin{array}{c}
\text { discontinuity is described by }
\end{array}}_{\dot{d}} \begin{aligned}
& v\langle\nabla D(\boldsymbol{r}) ; \vec{e}(\theta)\rangle
\end{aligned} \mu \chi\left[d(x, y)-d_{0}\right]=0
$$

Control law

$$
\begin{aligned}
& \frac{d g}{d t}=v^{2}\left\langle D^{\prime \prime} \vec{e} ; \vec{e}\right\rangle+v \omega\left\langle\nabla D(\boldsymbol{r}) ; \vec{e}_{\perp}\right\rangle+\mu \frac{d \chi}{d t} \\
& \stackrel{\mu \approx}{\approx} v^{2}\|\nabla D\|\left[\frac{\left\langle D^{\prime \prime} \vec{e} ; \vec{e}\right\rangle}{\|\nabla D\|}-\frac{\bar{\omega}}{v} \operatorname{sgn} v_{\tau} \mathbf{s g n} g\right]
\end{aligned}
$$

$$
\dot{\boldsymbol{r}}=v \vec{e}(\theta), \dot{\theta}=\omega
$$

$$
\boldsymbol{r}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \vec{e}=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]
$$

State variables and discontinuity surface

$$
\text { state }(\boldsymbol{r}, \theta)
$$

$$
g(\boldsymbol{r}, \theta):=\underbrace{\begin{array}{c}
\text { discontinuity is described by } \\
v\langle\nabla D(\boldsymbol{r}) ; \vec{e}(\theta)\rangle
\end{array}+\mu \chi\left[d(x, y)-d_{0}\right]=0}_{\dot{d}}
$$

Control law

$$
\begin{aligned}
& \frac{d g}{d t}=v^{2}\left\langle D^{\prime \prime} \vec{e} ; \vec{e}\right\rangle+v \omega\left\langle\nabla D(\boldsymbol{r}) ; \vec{e}_{\perp}\right\rangle+\mu \frac{d \chi}{d t} \\
& \stackrel{\mu \approx 0}{\approx} v^{2}\|\nabla D\|\left[\frac{\left\langle D^{\prime \prime} \vec{e} ; \vec{e}\right\rangle}{\|\nabla D\|}-\frac{\bar{\omega}}{v} \operatorname{sgn} v_{\tau} \mathbf{s g n} g\right]
\end{aligned}
$$

field gradient
\rightarrow
$\dot{d}+\mu \chi\left(d-d_{0}\right)=?$

$\rightarrow$$\rightarrow$

$$
v\langle\nabla D ; \vec{e}\rangle+\mu \chi\left(d-d_{0}\right)=?
$$

field gradient

field gradient

In any simply connected domain
If $\nabla D \neq 0$ and is continuous, then there exists a continuous function $\alpha(\boldsymbol{r})$ (polar angle) such that $\nabla D(\boldsymbol{r})=\|\nabla D(\boldsymbol{r})\|\left[\begin{array}{c}\cos \alpha(\boldsymbol{r}) \\ \sin \alpha(\boldsymbol{r})\end{array}\right]$

$v\langle\nabla D ; \vec{e}\rangle+\mu \chi\left(d-d_{0}\right)=?$
field gradient

In any simply connected domain
If $\nabla D \neq 0$ and is continuous, then there exists a continuous function $\alpha(\boldsymbol{r})$ (polar angle) such that $\nabla D(\boldsymbol{r})=\|\nabla D(\boldsymbol{r})\|\left[\begin{array}{c}\cos \alpha(\boldsymbol{r} \\ \sin \alpha(\boldsymbol{r})\end{array}\right]$
angle between \vec{e} and $\nabla D=$ polar angle of \vec{e} - polar angle of ∇D

angle between $\overrightarrow{\boldsymbol{e}}$ and $\nabla D=$ polar angle of $\overrightarrow{\boldsymbol{e}}-\alpha(\boldsymbol{r})$

field gradient

In any simply connected domain
If $\nabla D \neq 0$ and is continuous, then there exists a continuous function $\alpha(\boldsymbol{r})$ (polar angle) such that $\nabla D(\boldsymbol{r})=\|\nabla D(\boldsymbol{r})\|\left[\begin{array}{c}\cos \alpha(r) \\ \sin \alpha(r)\end{array}\right]$
angle between \vec{e} and $\nabla D=$ polar angle of $\vec{e}-\alpha(\boldsymbol{r})$

Autonomous Navigation of a Non-Holonomic Robot for 3D Tracking Unsteady Environmental Boundaries

$$
\begin{gathered}
\dot{\boldsymbol{r}}=v \overrightarrow{\boldsymbol{\imath}}, \quad \frac{d \overrightarrow{\boldsymbol{\imath}}}{d t}=\boldsymbol{u}, \quad\langle\boldsymbol{u} ; \overrightarrow{\boldsymbol{\imath}}\rangle=0, \quad\|\boldsymbol{u}\| \leq \bar{u} \\
\boldsymbol{u}=r \overrightarrow{\boldsymbol{j}}-q \overrightarrow{\boldsymbol{k}} \Leftrightarrow r=\langle\boldsymbol{u} ; \overrightarrow{\boldsymbol{j}}\rangle \wedge q=-\langle\boldsymbol{u} ; \overrightarrow{\boldsymbol{k}}\rangle
\end{gathered}
$$

Here $\langle\cdot ; \cdot\rangle$ is the inner product, q is the pitch and r is the yaw rate

Mission description

Time-varying scalar field $d=D(t, r)$
Moving and deforming isosurface $S_{t}\left(d_{0}\right):=\left\{\boldsymbol{r}: D(t, \boldsymbol{r})=d_{0}\right\}$
Find, arrive at, and then repeatedly sweep the isosurface within a given range of altitudes $\left[h_{-}, h_{+}\right.$]

$$
\begin{gathered}
\dot{\boldsymbol{r}}=v \overrightarrow{\boldsymbol{\imath}}, \quad \frac{d \overrightarrow{\boldsymbol{\imath}}}{d t}=\boldsymbol{u}, \quad\langle\boldsymbol{u} ; \overrightarrow{\boldsymbol{\imath}}\rangle=0, \quad\|\boldsymbol{u}\| \leq \bar{u} \\
\boldsymbol{u}=r \overrightarrow{\boldsymbol{j}}-q \overrightarrow{\boldsymbol{k}} \Leftrightarrow r=\langle\boldsymbol{u} ; \overrightarrow{\boldsymbol{j}}\rangle \wedge q=-\langle\boldsymbol{u} ; \overrightarrow{\boldsymbol{k}}\rangle
\end{gathered}
$$

Here $\langle\cdot ; \cdot\rangle$ is the inner product, q is the pitch and r is the yaw rate

Here $\langle\cdot ; \cdot\rangle$ is the inner product, q is the pitch and r is the yaw rate

Mission description

Time-varying scalar field $d=D(t, r)$
Moving and deforming isosurface $S_{t}\left(d_{0}\right):=\left\{\boldsymbol{r}: D(t, \boldsymbol{r})=d_{0}\right\}$
Find, arrive at, and then repeatedly sweep the isosurface within a given range of altitudes $\left[h_{-}, h_{+}\right.$] \square

$$
\dot{\boldsymbol{r}}=v \overrightarrow{\boldsymbol{\imath}}, \quad \frac{d \overrightarrow{\boldsymbol{\imath}}}{d t}=\boldsymbol{u}, \quad\langle\boldsymbol{u} ; \overrightarrow{\boldsymbol{\imath}}\rangle=0, \quad\|\boldsymbol{u}\| \leq \bar{u}
$$

$$
\boldsymbol{u}=r \overrightarrow{\boldsymbol{j}}-q \overrightarrow{\boldsymbol{k}} \Leftrightarrow r=\langle\boldsymbol{u} ; \overrightarrow{\boldsymbol{j}}\rangle \wedge q=-\langle\boldsymbol{u} ; \overrightarrow{\boldsymbol{k}}\rangle
$$

Mission description

Time-varying scalar field $d=D(t, r)$
Moving and deforming isosurface $S_{t}\left(d_{0}\right):=\left\{\boldsymbol{r}: D(t, \boldsymbol{r})=d_{0}\right\}$
Find, arrive at, and then repeatedly sweep the isosurface within a given range of altitudes $\left[h_{-}, h_{+}\right.$]

Here $\langle\cdot ; \cdot\rangle$ is the inner product, q is the pitch and r is the yaw rate

Mission description

Time-varying scalar field $d=D(t, r)$
Moving and deforming isosurface $S_{t}\left(d_{0}\right):=\left\{\boldsymbol{r}: D(t, \boldsymbol{r})=d_{0}\right\}$
Find, arrive at, and then repeatedly sweep the isosurface within a given range of altitudes $\left[h_{-}, h_{+}\right.$]
$\dot{\boldsymbol{r}}=v \overrightarrow{\boldsymbol{\imath}}, \quad \frac{d \overrightarrow{\boldsymbol{\imath}}}{d t}=\boldsymbol{u}, \quad\langle\boldsymbol{u} ; \overrightarrow{\boldsymbol{\imath}}\rangle=0, \quad\|\boldsymbol{u}\| \leq \bar{u}$
$\boldsymbol{u}=r \overrightarrow{\boldsymbol{j}}-q \overrightarrow{\boldsymbol{k}} \Leftrightarrow r=\langle\boldsymbol{u} ; \overrightarrow{\boldsymbol{j}}\rangle \wedge q=-\langle\boldsymbol{u} ; \overrightarrow{\boldsymbol{k}}\rangle$
Here $\langle\cdot ; \cdot\rangle$ is the inner product, q is the pitch and r is the yaw rate

Necessary conditions for trackability of the isosurface are given in terms of its front speed and acceleration, principal curvature, rate of rotation, density of isolines and the rates of its change

$$
\begin{gathered}
v_{\text {vert }}:=0 \text { in } \mathfrak{P}, \quad v_{\text {vert }}:=v_{h} \text { in } \mathfrak{U}, \quad v_{\text {vert }}:=-v_{h} \text { in } \mathfrak{D} \\
\boldsymbol{u}=-\bar{u}_{h} \cdot \mathbf{s g n}\left[\dot{h}-v_{\text {vert }}\right] \boldsymbol{h}_{\mathrm{y}-\mathrm{p}}+\bar{u}_{d} \cdot \mathbf{s g n}\left[\dot{d}+\mu \chi\left(d-d_{0}\right)\right] \boldsymbol{h}_{\mathrm{y}-\mathrm{p}} \times \overrightarrow{\boldsymbol{\imath}}
\end{gathered}
$$

where $v_{h}, \bar{u}_{d}, \bar{u}_{h}, \mu$ are controller parameters, $\boldsymbol{h}_{\mathrm{y}-\mathrm{p}}$ is the projection of the vertical vector onto the yaw-pitch plane of the robot normalized to the unit length

Zoo of some elaborated applications

- Searching, circumnavigating, and following both single and multiple unpredictably maneuvering targets by a single robot and robotic team
- Distributed control, effective self-distribution
- Kinematics (nonholonomy, underactuation) and dynamics constraints

.nas.

- Tight surface scan by a mobile robot

вxelverace

Zoo of some elaborated applications

- Environmental extremum seeking in 2D and 3D by single and multiple robots, both steady and dynamic fields, kinematics (e.g., nonholonomy and underactuation) and dynamics constraints
- Tracking environmental level sets in 2D and 3D by single and multiple robots, maze-like environments
- Border patrolling and obstacle avoidance; moving and deforming obstacles

- 3D navigation in tunnel-like environments,
- Decentralized sweep boundary coverage
- Distributed self-deployment of robotic networks; barrier and sweep coverage
- Autonomous unmanned helicopter in unknown urban environments
- Multiple wheeled robots in unknown cluttered environments/ Unmanned agricultural tractor / Motorized mobile hospital bed

- Cannot distinguish among the peers
- No communication facilities
- Cannot play distinct roles
- Unaware of the team's size and the corridor width
- The obstacles are unknown
- Has access to the corridor direction and relative positions of the objects within a finite distance if the view of the object is unobstructed by an obstacle.

Control law inspired by collective behavior of animal spieces

$$
\begin{gathered}
v_{i}^{x}:=v_{\rightarrow}+\frac{1}{\left|\mathcal{N}_{i}\right|} \sum_{j \in \mathcal{N}_{i}} \Upsilon\left[x_{j}-x_{i}\right], \\
v_{i}^{y}:=\equiv\left[d_{i, \delta}^{+}\right]-\equiv\left[d_{i, \delta}^{-}\right] \\
+\max _{j \in \mathcal{N}_{i}} h\left[y_{j}-y_{i}\right] w_{j}^{-}+\min _{j \in \mathcal{N}_{i}} h\left[y_{j}-y_{i}\right] w_{j}^{+},
\end{gathered}
$$

Sear colleagues, thant you for your find attention
Please enjoy the rest of this meeting.

