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a course or trajectory to a destination location

O Environment: Structured (known, predictable) <> Unstructured
(unknown, unpredictable)

O Planning horizon: Global +» Local +» Reactive
@ Kinematic control

@ Guarantees of goal attainment
@ under conditions that are close to

those necessary for the mission feasibility

Robots’ Navigation

The aim of navigation is searching a (optimal or suboptimal)

path from the start point to the destination point with obstacle
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Examples with popular insects

Honey bees navigation

keep the flow
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+ — av 1
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1
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P(r)- pheromone concentration

V1, :
v constant speeld of the an at location F
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\6\ area L:/P[r+R(9)z] u(dz),

Does the ant succeed?
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X
—) R(O)rotation through angle 6

‘ u=1u-sgn(L - R)

minimal turning
radius
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so that the ant arrives at V., in a finite time
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d= —vcos @, where v is the robots speed

p d = —v = const = motion over a logarithmic
¥ & spiral
f
| interception = Dubins vehicle
| ™" with requested Xj = Vj cos 0; 0; = uj € [—u;, uj]
Yi=vVisin6; ’ v; € [0, V4], Vo2 = const

/ aspect angle

at the hit point
based on only The prey is unable to increase the distance d if

N scnt
%\ range measurements : s s s 28 =
(p = const and only if v» > Vq and UsVo > U1 V1 +d 7 (V2 + V4)
Logarithmic spiral

R

Basic control paradigm

@ dis not necessarily the distance to a single pointwise target
Many targets, extended targets, cumulative strength of a signal, value of
a scalar field

Up = Upsgn[d — v]

Up = Upsgn[d + px(d — )], 1 >0
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X = U € R, objective: x — 0
control law: U = —sgnx
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///////m
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-1 ifx>e
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Discontinuous control laws and sliding mode regimes

Toy example

X = U € R, objective: x — 0
control law: U = —sgnhx

AN NQNN
AR NN
SO stng mooe
ST St
////C%/;//
S

sgnx

e~0 X

-1 ifx>e
X = -2 if —e<x<e
1 ifx < —¢

x=a(x)+b(x)u, xeR"ueR, u=u(x):=

uy ifg(x) >0,
if g(x) <0

v _ () ifg(x) >0,
X =100 = {f(x) if g(x) < 0

|

is tangent to the discontinuity surface
lies on the straight line segment with the ends f_ (x)and f.(x)
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Discontinuous control laws and sliding mode regimes

Toy example

. i >
x=a(x)+b(x)u, x e R ueR, u=u(x):= uy it g(x) 20,

X = U € R, objective: x — 0 u- ifg(x)<o0
control law: U = —sgnx : >
X:f(X) o f+(X) lfg(X) >0,
X f_(x) ifg(x)<0
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//////////

S
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P
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1 ifx < —¢

P is tangent to the discontinuity surface
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Discontinuous control laws and sliding mode regimes

X = U € R, objective: x — 0
control law: U = —sgnx

NN\

AR RRNN

SO sting moce
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sgnx
ex~0 X
-1 ifx>e
X = —g if —e<x<e

1 if x < —¢

General case

x=a(x)+b(x)u, xeR"ueR, u=u(x)

o _ ) R(x) ifg(x) >0,
X =100 := {f_(x) if g(x) < 0

Ut

if g(x) = 0,
if g(x) <0

dgx(0)]

(Va(x); £ (X)) x (Vg(x); - (x)) > 0 (VAW f(¥)) = =g = le=t

if % = f(x), x(t.) = y

A. Matveev ABTOHOMHas HaBUralUsA

le=t.




Discontinuous control laws and sliding mode regimes

X = U € R, objective: x — 0
control law: U = —sgnx

NN\

AR RRNN

SO sting moce

ST

sgnx
ex~0 X
-1 ifx>e
X = —g if —e<x<e

1 if x < —¢

General case

x=a(x)+b(x)u, x e R",ueR, u=u(x)

o fh0 g >0,
X =100 := {f_(x) if g(x) < 0

Ut

if g(x) = 0,
if g(x) <0

Wi B (Vel)ify) = 2
lim >0 s die S

li =X = ]
y—>x,|;?y)>0 dt  y—x.g(y)<o dt if x=1f(x),x(t.)=y

A. Matveev ABTOHOMHas HaBUralUsA

le=t.




Discontinuous control laws and sliding mode regimes

X = U € R, objective: x — 0 . uy ifg(x)>0
= R" R = = St
control law: U = —sgnx X=al)+b(xu, xR, UER,  u=u(x) {u ifg(x) <0
NN fom i = 4 0D H g 20,
AR\ RRNRNE f_(x) ifg(x)<0
NN stong moce
2227k
R A
ST
sgnx
e~0 «x
o
1 ifx>e
x=¢-% if —e<x<e
S ~
1 ifx < —¢ nemsdliNe - dg
y—=x,9()>0dt  y—x,g(y)<o dt a(y)>0 g(y)<0

A. Matveev ABTOHOMHas HaBUralUsA



Discontinuous control laws and sliding mode regimes

X = U € R, objective: x — 0 . uy ifg(x)>0
= R" R = = Sht
control law: U = —sgnx X=al)+b(xu, xR, UER,  u=u(x) {u ifg(x) <0
AN\ NN X = f(x) = fi(x) ifg(x) >0,
AR\ RRNRNE f_(x) ifg(x)<0
SO sting moce
ST
AR A
S S
sgnx
e~0 «x
o
1 ifx>e
x=¢-% if —e<x<e
S ~
1 ifx<—e 2 dg - dg
m == o
y—x,9(y)>0 dt y—x,9(y)<0 dt 9(y)>0

A. Matveev ABTOHOMHas HaBUralUsA



timation

Robot measures only the field
value d at its current location

D(x,y) € R unknown unimodal scalar field

dy-isoline
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timation

Robot measures only the field

D(x R unk imodal lar field
G ye S unkncomgeninodal e gt value d at its current location

dy-isoline

@ Constant speed v > 0

@ Control by a rudder: sets up the

angular velocity of rotation w

@ Constraints on this velocity |w| < @
X =Vcosh, y=vsinb, 0 =w
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timation

Robot measures only the field

D(x R unk imodal lar field
G ye S unkncomgeninodal e gt value d at its current location

dy-isoline

@ Constant speed v > 0

@ Control by a rudder: sets up the

angular velocity of rotation w

@ Constraints on this velocity |w| < @
X =Vcosh, y=vsinb, 0 =w
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timation

Robot measures only the field

D(x R unk imodal lar field
G ye S unkncomgeninodal e gt value d at its current location

- dyrisoline

@ Constant speed v > 0

@ Control by a rudder: sets up the

angular velocity of rotation w

@ Constraints on this velocity |w| < @
X=Vcosh, y=vsinb, 0 =w

Description of the path

@ Path p = (x,y);ip = p(s) € R?
where s is the natural parameter (arc
length)
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Robot measures only the field

D(x R unk imodal lar field
(e RAnknovntunimtdal sealamfie value d at its current location

eo- dg-isoline

current point

Primary constraints

@ Constant speed v > 0

@ Control by a rudder: sets up the

angular velocity of rotation w

@ Constraints on this velocity |w| < @
X=Vcosf, y=vsinb, 6 =w

Description of the path

@ Path p = (x,y);ip = p(s) € R,
where s is the natural parameter (arc
length)
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timation

Robot measures only the field

D(x R unk imodal lar field
(e RAnknovntunimtdal sealamfie value d at its current location

- doeisoline

unit tangent vectorH

Primary cons

@ Constant speed v > 0

@ Control by a rudder: sets up the

angular velocity of rotation w

@ Constraints on this velocity |w| < @
X=Vcosf, y=vsinb, 6 =w

Description of the path

@ Path p = (x,y);ip = p(s) € R,
where s is the natural parameter (arc
length)
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eo- dg-isoline

Primary constraints

@ Constant speed v > 0

@ Control by a rudder: sets up the

angular velocity of rotation w

@ Constraints on this velocity |w| < @
X=Vcosf, y=vsinb, 6 =w

D(x,y) € R unknown unimodal scalar field

Description of the path

@ Path p = (x,y);ip = p(s) € R,
where s is the natural parameter (arc
length)

OHOMHa# HaBUTalUA

Robot measures only the field
value d at its current location

errat frame

unit normal vector




eo- dg-isoline

Primary constraints

@ Constant speed v > 0

@ Control by a rudder: sets up the

angular velocity of rotation w

@ Constraints on this velocity |w| < @
X=Vcosf, y=vsinb, 6 =w

Description of the path

@ Path p = (x,y);ip = p(s) € R,
where s is the natural parameter (arc
length)

Q 7(s) = dgés) — unit tangent vector

D(x,y) € R unknown unimodal scalar field

OHOMHa# HaBUTalUA

Robot measures only the field
value d at its current location




- doeisoline

@ Constant speed v > 0

@ Control by a rudder: sets up the

angular velocity of rotation w

@ Constraints on this velocity |w| < @
X=Vcosf, y=vsinb, 6 =w

Description of the path

@ Path p = (x,y);ip = p(s) € R,
where s is the natural parameter (arc
length)

Q 7(s) = d‘;;s) — unit tangent vector

D(x,y) € R unknown unimodal scalar field Hobotimeasuesgon| vathiepfield

value d at its current location

Paths trackable by the robot
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- doeisoline

@ Constant speed v > 0

@ Control by a rudder: sets up the

angular velocity of rotation w

@ Constraints on this velocity |w| < @
X=Vcosf, y=vsinb, 6 =w

D(x,y) € R unknown unimodal scalar field

@ Path p = (x,y);ip = p(s) € R,
where s is the natural parameter (arc
length)

Q 7(s) = % — unit tangent vector

o % = 3(s) — signed curvature

Description of the path

Robot measures only the field
value d at its current location
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- doeisoline

@ Constant speed v > 0

@ Control by a rudder: sets up the

angular velocity of rotation w

@ Constraints on this velocity |w| < @
X=Vcosf, y=vsinb, 6 =w

Description of the path

@ Path p = (x,y);ip = p(s) € R,
where s is the natural parameter (arc
length)

Q 7(s) = % — unit tangent vector

o % = 3(s) — signed curvature

D(x,y) € R unknown unimodal scalar field

Robot measures only the field
value d at its current location

= [50] = pistn) 5() = v
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Robot Navigation for Monitoring Environmental Boundaries without Field Gradient Estimation

Robot measures only the field
value d at its current location

_ D(x,y) € R unknown unimodal scalar field

_,... dy-isoline

@ Constant speed v > 0

@ Control by a rudder: sets up the

angular velocity of rotation w

@ Constraints on this velocity |w| < @
X=Vcosf, y=vsinb, 6 =w

r(t) = [38] = pls(t)] & r(0) = pls(O)] and 7 (1) = Gpls(Ivt > 0 §(t) = +v

@ Path p = (x,y)ip = p(s) € R?, ¢
where s is the natural parameter (arc
length)

Q 7(s) = % — unit tangent vector

o % = 3(s) — signed curvature
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Robot Navigation for Monitoring Environmental Boundaries without Field Gradient Estimation

Robot measures only the field
value d at its current location

_ D(x,y) € R unknown unimodal scalar field

_,... dy-isoline

@ Constant speed v > 0

@ Control by a rudder: sets up the

angular velocity of rotation w

@ Constraints on this velocity |w| < @
X=Vcosf, y=vsinb, 6 =w

Paths trackable by the robot
r(t) = [38] = pls(t)] & r(0) = pls(O)] and 7 (1) = Gpls(Ivt > 0 §(t) = +v

X|
Q@ Path p = (x,y)ip = p(s) € R?, _bol
where s is the natural parameter (arc r(t) = [;gg] =v [Z?:g((rt))] =P5— 47y =+4v [::g:[[j((f))”
length)

Q 7(s) = % — unit tangent vector

o % = 3(s) — signed curvature
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Robot Navigation for Monitoring Environmental Boundaries without Field Gradient Estimation

Robot measures only the field
value d at its current location

_ D(x,y) € R unknown unimodal scalar field

_,... dy-isoline

@ Constant speed v > 0

@ Control by a rudder: sets up the

angular velocity of rotation w

@ Constraints on this velocity |w| < @
X=Vcosf, y=vsinb, 6 =w

Paths trackable by the robot
r(t) = [38] = pls(t)] & r(0) = pls(O)] and 7 (1) = Gpls(Ivt > 0 §(t) = +v

X
Q@ Path p = (x,y)ip = p(s) € R?, _bol
where s is the natural parameter (arc r(t) = [;gg] =v [Z?:g((rt))] %p[s(t) = %é =47V =+4v [::g:[[j(([’))”
length)

Q 7(s) = % — unit tangent vector

o % = 3(s) — signed curvature
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Robot Navigation for Monitoring Environmental Boundaries without Field Gradient Estimation

Robot measures only the field
value d at its current location

_ D(x,y) € R unknown unimodal scalar field

_,... dy-isoline

@ Constant speed v > 0

@ Control by a rudder: sets up the

angular velocity of rotation w

@ Constraints on this velocity |w| < @
X=Vcosf, y=vsinb, 6 =w

Paths trackable by the robot
Description of the path
r(t) = [38] = pls(t)] & r(0) = pls(O)] and 7 (1) = Gpls(Ivt > 0 §(t) = +v
(

@ Path p = (x,y)ip = p(s) € R? )
where s is the natural parameter (arc r(t) = [;gg] =v [Z?:Z(,‘))] 2pls(h] = dpS =+7v=xv [::997[[5(( ))”

length) rackability < 3s(-)s.t. 6(t) := £6,[s(t)] meets the limits on the angular velocit
Q 7(s) = d‘;;s) — unit tangent vector
(*) ded,( ) — = 3(s) — signed curvature
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Robot Navigation for Monitoring Environmental Boundaries without Field Gradient Estimation

Robot measures only the field
value d at its current location

_ D(x,y) € R unknown unimodal scalar field

_,... dy-isoline

@ Constant speed v > 0

@ Control by a rudder: sets up the

angular velocity of rotation w

@ Constraints on this velocity |w| < @
X=Vcosf, y=vsinb, 6 =w

Paths trackable by the robot
Description of the path
r(t) = [38] = pls(t)] & r(0) = pls(O)] and 7 (1) = Gpls(Ivt > 0 §(t) = +v
(

@ Path p = (x,y);ip = p(s) € R,

where s is the natural parameter (arc r(t) = [;gg] =v [Z?:Z(,‘))] 2pls(h] = dpS =+7v=xv [::997[[5(( ))”
length) rackability < 3s(-)s.t. 6(t) := £6,[s(t)] meets the limits on the angular velocit
Q 7(s) = d‘;;s) — unit tangent vector & |60t = |d97— |8 = |lv <@

(*) ded,( ) — = 3(s) — signed curvature
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Robot Navigation for Monitoring Environmental Boundaries without Field Gradient Estimation

B D(x,y) € R unknown unimodal scalar field Hobotgmeasmesfon yathepicld

_.,,. dyeisoline value d at its current location

@ Constant speed v > 0

@ Control by a rudder: sets up the

angular velocity of rotation w

@ Constraints on this velocity |w| < @
X=Vcosf, y=vsinb, 6 =w

Paths trackable by the robot
Description of the path

. r(t) = [ ;g;] = pls(t)] < r(0) = p[s(0)] and F(t) = Lp[s()]vt >0 &(t) = +v
Q@ Path p = (x,y):p p(s) € R%, . x(t) cos (1) J b cos 07 [s(1)]
where s is the natural parameter (arc r(t) = [y(,)] =V [sin g(t)] @pPls(t)] = s = £7v =£v [s.ng s(t ()]}
length) rackability < 3s(-)s.t. 6(t) := £6,[s(t)] meets the limits on the angular velocit
@ 7(s) = 929 _ ynit tangent vector & 6(1)] = |d97— N \s = |sv <@
(s QELZICRE = 3(s) — signed curvature = 1 — .
ds & |2 £ € x| > Rmin := £ curvature radius

ABTOHOMHas HaBUTALUA



HBIM IIOJIEM

dy-isoline

Robot measures only the field value d at its
current location

@ Constant speed v > 0

@ Control by a rudder: sets up the
angular velocity of rotation w

@ Constraints on this velocity |w| < ©

F=vé(9), 6 =w

r=1[y], e=[%4)

ABTOHOMHaA HaBUTALUA



. HEU3BECTHBIM IIOJIEM

D(x,y) € R unknown
unimodal scalar field

& m

w = —wsgn[d + pux(d — )]
20) Robot measures only the field value d at its
current location

@ Constant speed v > 0

@ Control by a rudder: sets up the
angular velocity of rotation w

@ Constraints on this velocity |w| < ©

F=vé(9), 6 =w

r=1[y], &=[&0]

DHOMHasf HaBUCALUA



D(x,y) € R unknown
unimodal scalar field

- _— _ Coumoia |

w = —wsgn[d + pux(d — )]
20) Robot measures only the field value d at its
current location

@ Constant speed v > 0 State variables and discontinuity surface
@ Control by a rudder: sets up the
angular velocity of rotation w _ >

@ Constraints on this velocity |w| < © g = (r,0) = D(r)

state (r, 6)
discontinuity is described by
g(r,8) := v(VD(r); &6)) +ux[d(x,y) — d] =0
ﬁ_/

F=véh), 6 =w
Q v

r= 3], = (8]

sin 6

OHOMHa# HaBUTalUA



- d-isoline

@ Constant speed v > 0
@ Control by a rudder: sets up the
angular velocity of rotation w

@ Constraints on this velocity |w| < ©

r=1[y], &=

F=vé(9), 6 =w

o)

D(x,y) € R unknown
unimodal scalar field

w = —wsgn[d + pux(d — )]
20) Robot measures only the field value d at its
current location

State variables and discontinuity surface

0 o ~N state (r, 6)
9>0=>w=-3 [ ) g=(r.0) = D(r)
=< discontinuity is described by
g<0=w=w( ) 9(r,6) := v{VD(r); (6)) +ux[d(x,y) — dy] =0
N —_
d

OHOMHa# HaBUTalUA



D(x,y) € R unknown
unimodal scalar field

- _— _ Coumoia |

w = —wsgn[d + pux(d — )]
2(d—do) Robot measures only the field value d at its
i- M“/ &) >0 current location
@ Constant speed v > 0 s State variables and discontinuity surface
d=—py(d—do) <
@ Control b_y a ruddeI:. sets up the — state (r, 0)
angular velocity of rotation w g>0=>w=—-o k ) g=(r,0) = D(r)
@ Constraints on this velocity |w| < @ = esamimty % oo by
g<0=w=w( ) 9(r,6) := v{VD(r); (6)) +ux[d(x,y) — dy] =0
-/ —_————
d

@ X :=supy [x(d)| <

OHOMHa# HaBUTalUA



D(x,y) € R unknown
unimodal scalar field

- _— _ Coumoia |

w = —wsgn[d + pux(d — )]
2(d—do) Robot measures only the field value d at its
i- M“/ &) >0 current location
@ Constant speed v > 0 s State variables and discontinuity surface
d=—py(d—do) <
@ Control b_y a ruddeI:. sets up the — state (r, 0)
angular velocity of rotation w g>0=>w=—-o k ) g=(r,0) = D(r)
@ Constraints on this velocity |w| < @ = esamimty % oo by
g<0=w=w( ) 9(r,6) := v{VD(r); (6)) +ux[d(x,y) — dy] =0
-/ —_————
d

@ X == supy [x(d)| < oo
() |[VD|| > by > 0 in working zone

OHOMHa# HaBUTalUA



D(x,y) € R unknown
unimodal scalar field

- _— _ Coumoia |

w = —wsgn[d + pux(d — )]
2(d - do) Robot measures only the field value d at its
i- M“/ &) >0 current location
— dy —
@ Constant speed v > 0 o State variables and discontinuity surface
d=—py(d—do)
@ Control b_y a ruddeI:. sets up the — state (r, 0)
angular velocity of rotation w g>0=>w=—-o k ) g=(r,0) = D(r)
@ Constraints on this velocity |w| < @ /‘:/ esamimty % oo by
g<0=w=w( ) 9(r,6) := v{VD(r); (6)) +ux[d(x,y) — dy] =0
-/ —_————
d

@ X == supy [x(d)| < oo
* ] H D|| > by > 0 in working zone
@ d=—px = plxl <v|VD|
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D(x,y) € R unknown
unimodal scalar field

- _— _ Coumoia |

w = —wsgn[d + pux(d — )]
2(d - do) Robot measures only the field value d at its
i- M“/ &) >0 current location
— dy —
@ Constant speed v > 0 o State variables and discontinuity surface
d=—py(d—do)
@ Control b_y a ruddeI:. sets up the — state (r, 0)
angular velocity of rotation w g>0=>w=—-o k ) g=(r,0) = D(r)
@ Constraints on this velocity |w| < @ /‘:/ esamimty % oo by
g<0=w=w( ) 9(r,6) := v{VD(r); (6)) +ux[d(x,y) — dy] =0
-/ —_————
d

@ X == supy [x(d)| < oo
* ] H D|| > by > 0 in working zone
@ d=—px = plxl <v|VD]|

OHOMHa# HaBUTalUA



‘ _____ dyeisoline

@ Constant speed v > 0

@ Control by a rudder: sets up the
angular velocity of rotation w

@ Constraints on this velocity |w| < ©

D(x,y) € R unknown
unimodal scalar field

w = —wsgn[d + pux(d — )]
x(d—do)
d=—px(d—do) >0

—

d=—py(d—dy) <0

(]
(*]
(]

X = supg [x(d)| < oo
v

D|| > by > 0 in working zone

d=—ux = plx| < v[[VD|

Robot measures only the field value d at its
current location

State variables and discontinuity surface

state (r, 6)
g=(r,0)=D(r
discontinuity is described by
g(r,8) := v(VD(r); &6)) +ux[d(x,y) — d] =0
ﬁ_/

d
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D(x,y) € R unknown
unimodal scalar field

x(d—do)
d=—py(d—do)>0

== Robot measures only the field value d at its
current location

& -

Primary const d=—py(d—do) <0

@ Constant speed v > 0 State variables and discontinuity surface

g>0=>w=—-w ()

@ Control by a rudder: sets up the state (r, 0)
angular velocity of rotation w _ _ >
- 2 2 : _ g<0=>w=w A g=(r,0)=D(r)
@ Constraints on this velocity |w| < @ \,_/ seantiimity i desaribed by
g(r, 0) := v{VD(r); &6)) +ux[d(x,y) — d] =0
—_————
d

@ X :=supy [x(d)| < 0
o H D|| > by > 0 in working zone o <Vé" ) >‘ s
@ d=—px = ulxl <VIVD| ssslor IV
vi{VDiE)| _ |4 <
VDl — — TVvDll
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D(x,y) € R unknown
y < unimodal scalar field

By - G ~ Controllaw |
| , A w = —wsgn[d + ux(d — db)]

x(d—do)
d=—py(d—do)>0

e Robot measures only the field value d at its

o - .
= d current location
d=—py(d—do) <0

Primary

@ Constant speed v > 0 g>0=>w=-o />\ State variables and discontinuity surface
@ Control by a rudder: sets up the k‘/ state (r, 0)
angular velocity of rotation w g<0sw=o N g=(r,0) z D(r)
@ Constraints on this velocity |w| < @ N esomtimuly & deserived by
g(r,0) :== v(vD(r); &)) +ux[d(x,y) — db] =0
—_—————

d

gy:wwmwn<m
IVD]| > by > 0 in working zone

. s 2
@ d=—px = ulxl < v|VD| GeasyiesTh
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D(x,y) € R unknown
unimodal scalar field

m Robot measures only the fleld value d at its

. current location
w = —wsgn[d + px(d — d)]

x(d—do)
d=—py(d—do)>0

-_— : state (r, 0)

& _

.- d-isoline

State variables and discontinuity surface

mary o g =(r,0)=D(r)
Primary cot d= a0 discontinuity is described by
@ Constant speed v > 0 g>0w= - />\ g(r,0) := v{VD(r); €6)) +ux[d(x,y) — dy] =0
@ Control by a rudder: sets up the k‘/ T’

angular velocity of rotation w N
@ Constraints on this velocity |w| < @

: X = supy [x(d)| < o0

IVD]| > by > 0 in working zone
. s 2

@ d=—px = ulxl < v|VD| GeasyiesTh
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D(x,y) € R unknown
unimodal scalar field

m Robot measures only the fleld value d at its

. current location
w = —wsgn[d + px(d — d)]

x(d—do)
d=—py(d—do)>0

-_— : state (r, 0)

& _

.- d-isoline

State variables and discontinuity surface

mary o g =(r,0)=D(r)
Primary cot d= a0 discontinuity is described by
@ Constant speed v > 0 g>0w= - />\ g(r,0) := v{VD(r); €6)) +ux[d(x,y) — dy] =0
@ Control by a rudder: sets up the k‘/ T’

angular velocity of rotation w N
@ Constraints on this velocity |w| < @

: X = supy [x(d)| < o0

IVD]| > by > 0 in working zone
. s 2

@ d=—px = ulxl < v|VD| GeasyiesTh
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D(x,y) € R unknown
unimodal scalar field

m Robot measures only the fleld value d at its

. current location
w = —wsgn[d + px(d — d)]

x(d—do)
d=—py(d—do)>0

-_— : state (r, 0)

& _

.- d-isoline

State variables and discontinuity surface

mary o g =(r,0)=D(r)
Primary cot d= a0 discontinuity is described by
@ Constant speed v > 0 g>0w= - />\ g(r,0) := v{VD(r); €6)) +ux[d(x,y) — dy] =0
@ Control by a rudder: sets up the k‘/ T’

angular velocity of rotation w N
@ Constraints on this velocity |w| < @

: X = supy [x(d)| < o0

IVD]| > by > 0 in working zone
. s 2

@ d=—px = ulxl < v|VD| GeasyiesTh
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T pO()OT'd HEU3BECTHBIM IIOJIEM

Robot’s model
i=vé), 6 =w

r=[3). =[]

sin 0

w = —wsgn[d + ux(d — &)] = —wsgng

g>0=>w=—-w )

State variables and discontinuity surface

state (r, 0)
discontinuity is described by
g(r,0) := v{VD(r); 86)) +ux[d(x,y) — do] =0
—

d
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aT pO()OT'd HEU3BECTHBIM IIOJIEM

Robot’s model
i=vé), 6 =w

r=[3). =[]

sin 0

w = —wsgn[d + ux(d — )] = —wsgng

g>0=>w=—-w ‘(:/

<03 w=w ()
g =% ()

Attracting and slid

State variables and discontinuity surface

state (r, 0)
discontinuity is described by
g(r,0) := v{VD(r); 86)) +ux[d(x,y) — do] =0
—

d

|' -
(r,e)a(rl*rve*),g>0 dt 7 (r,0)—(Fx,04),g<0

dg

lim

a9
dt

lim — >0,
(r,6)—(r«,04),9>0 dt (r,0)—(r«,0%),9<0

Two-side repelling

dg

lim

99
at
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aT pO()OT'd HEU3BECTHBIM IIOJIEM

Robot’s model
i=vé), 6 =w

r=[3). =[]

sin 0

w = —wsgn[d + ux(d — )] = —wsgng

g>0=>w=—-w ‘(:/

<03 w=w ()
g =% ()

Attracting and slid

State variables and discontinuity surface

state (r, 0)
discontinuity is described by
g(r,0) := v{VD(r); 86)) +ux[d(x,y) — do] =0
—

d

|' -
(r,e)a(rl*rve*),g>0 dt 7 (r,0)—(Fx,04),g<0

dg

lim

a9
dt

lim — >0,
(r,6)—(r«,04),9>0 dt (r,0)—(r«,0%),9<0

Two-side repelling

dg

lim

99
at
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aT pO()OT'd HEU3BECTHBIM IIOJIEM

State variables and discontinuity surface

Robot’s model
f = 2 state (r, 0)
= 9= discontinuity is described by
r=[;, &= [52] 9(r,0) = v (VD(r); 8(6)) +rex[dl(x, ) — cb] = 0
d

—wsgng

w = —wsgn[d + ux(d — &)] =
g>0=>w=—-w C)
_ /,,\‘ d8 _ [—sin6
g<0=>w=w | dG_[cose]_
) 8,
Attracting and slid
d d
lim &y <0, lim 9
(r,6)—(r«,0+),9>0 dt (r,6)—(r«,0+),9<0 dt
dg 17" = dé . dx
— = D'r;e vD(r); —0 —_
ar =S >+V< ()d9>+“dt

side repelling

l L i dg
m — 9 m —
(r,0)—(r«,0x),9>0 dt (r,0)—(r«,0x),9<0 dt
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aT pO()OT'd HEU3BECTHBIM IIOJIEM

Robot’s model

State variables and discontinuity surface

state (r, 0)

i=vé), 6 =w

r=1[y], &=[&7]

—wsgng

w = —wsgn [d+ px(d — dp)

b
/

g>0=>w=—-w

Y
A
N

/

<0=>w=w |
g w=w (

()

discontinuity is described by
g(r,0) := v{VD(r); 86)) +ux[d(x,y) — do] =0
—

Attracting and slid

' dg . dg
lim — s lim —
(r,6)—(r«,0+),9>0 dt (r,6)—(r«,0+),9<0 dt

d
%g = [;ossi"og] =
€L

side repelling

dg . dg
m

li — >0, | —
(r,e)a(rln?e*)»g>0 at (r,0)—(r«,0x),9<0 dt

‘;f =v? (D" &) +v <VD(r)

ABTOHOMHas HaBUTALUA

.dfg'>+ g
T "ot




T pO()OT'd HEU3BECTHBIM IIOJIEM

Robot’s model State variables and discontinuity surface
L= 5 state (r, 6)
F=ve(0), 0i=w discontinuity is described by
r=[y], 6= [=¢] g(r, 0) == v(VD(r); (0)) +ux[d(x,y) — db] =0

_ Cowollw | -

w = —wsgn [d+ px(d — do)]

—wsgng

A

g>0=>w=—-w ()

7/\
g<0=>w=w \\

>

Attracting and sliding

. dg . dg

lim — <0, lim —

(r,0)—(r«,0),g>0 dt (r,0)—(r«,0x),g<0 dt
. J dg s g z: dx
=v2(D vw (VD(r); é —_
m ot < > + Vw < J_> + p ot

lim LS %

(r, 9)—>(r*,6 ).9>0 df " (r, 9)—>(r*,6 ).9<0 df
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T pO()OT'd HEU3BECTHBIM IIOJIEM

Robot’s model

F=vé), 6 =w

r= 3], = (28]

sin 0

w = —wsgn[d + ux(d — &)] = —wsgng
I
g>0=>w=—-w A\J
TN
g<0:>w:w\ A
A

Attracting and sliding

. dg . dg
lim — <0, lim —
(r,0)—(r«,0),g>0 dt (r,0)—(r«,0x),g<0 dt

J

—m—

lim dg > dg
(r, 9)—>(r*,6 ).9>0 df " (r, 9)—>(r*,6 ).9<0 df

State variables and discontinuity surface

state (r, 6)

discontinuity is described by

g(r,0) :== v{VD(r); 86)) +ux[d(x,

y)—d] =0

ag g g
= — D + vD(r
- =2 ¢ P €) + Vo (

éJ_>+H

dx
at

greater field value

ABTOHOMHas HaBUTALUA



T pO()OT'd HEU3BECTHBIM IIOJIEM

Robot’s model

F=vé), 6 =w

r= 3], = (28]

sin 0

w = —wsgn[d + ux(d — &)] = —wsgng
I
g>0=>w=—-w A\J
TN
g<0:>w:w\ A
A

Attracting and sliding

. dg . dg
lim — <0, lim —
(r,0)—(r«,0),g>0 dt (r,0)—(r«,0x),g<0 dt

J

—m—

lim dg > dg
(r, 9)—>(r*,6 ).9>0 df " (r, 9)—>(r*,6 ).9<0 df

State variables and discontinuity surface

state (r, 6)

discontinuity is described by

g(r,0) :== v{VD(r); 86)) +ux[d(x,

y)—d] =0

ag g g
= — D + vD(r
- =2 ¢ P €) + Vo (

éJ_>+H

dx
at

greater field value
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T pO()OT'd HEU3BECTHBIM IIOJIEM

Robot’s model

F=vé), 6 =w

r= 3], = (28]

sin 0

w = —wsgn[d + ux(d — &)] = —wsgng
I
g>0=>w=—-w A\J
TN
g<0:>w:w\ A
A

Attracting and sliding

. dg . dg
lim — <0, lim —
(r,0)—(r«,0),g>0 dt (r,0)—(r«,0x),g<0 dt

J

—m—

lim dg > dg
(r, 9)—>(r*,6 ).9>0 df " (r, 9)—>(r*,6 ).9<0 df

State variables and discontinuity surface

state (r, 6)

discontinuity is described by

g(r,0) :== v{VD(r); 86)) +ux[d(x,

y)—d] =0

ag g g
= — D + vD(r
- =2 ¢ P €) + Vo (

éJ_>+H

dx
at

greater field value
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T pO()OT'd HEU3BECTHBIM IIOJIEM

State variables and discontinuity surface

Robot’s model
5 — v j state (r,6)
F=ve®), 6=w discontinuity is described by
r=1[y], &=[&0] g(r,0) == v(VD(r); &09)) +nux[d(x,y) — do] =0
d

—wsgng

w = —wsgn [d+ px(d — do)]

g>0=>w=—-w ()

—~ i
g<0:>w:w\ A

AN

>

Attracting and sliding

a9

lim — <0,
(r,0)—(r«,0x),g<0 dt
~ d == = d
s (D"'&;8) + vw (VD(r) e¢>+u7>t<

dg )
lim
(r,6)—(r«,0x),9>0 dt

m at
w0 o <D”§; é> w <VD(r) 5 >
~ D —
@ g S ”{ vor t v \Tvol’

lim a9
(r, 9)—>(r*,6 ).9>0 df

lim
' (r, 9)—>(r*,6 ).9<0 df
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T pO()OT'd HEU3BECTHBIM IIOJIEM

Robot’s model State variables and discontinuity surface
L= 5 state (r, 6)
F=ve(0), 0i=w discontinuity is described by
r=[y], 6= [=¢] g(r, 0) == v(VD(r); (0)) +ux[d(x,y) — db] =0

_ Cowollw | -

w = —wsgn [d+ px(d — do)]

—wsgng

A

g>0=>w=—-w ()

7/\
g<0=>w=w \\

>

Attracting and sliding

. dg . dg
lim — <0, lim —
(r,0)—(r«,0),g>0 dt (r,0)—(r«,0x),g<0 dt

> = ag g = dx

= D vD(r =

m o = (DUE8) £va (VD BL) e

HR0 5 (D"'&; &) *<VD() — >
d d ~ v°||VD — €, )sgng
im 95, @y hel { VDI vop o

(r, 9)—>(r*,6 ).9>0 df (r, 9)—>(r*,6 ).9<0 df
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T pO()OT'd HEU3BECTHBIM IIOJIEM

Robot’s model

F=vé), 6 =w

r= 3], = (28]

sin 0

w = —wsgn[d + ux(d — &)] = —wsgng
I
g>0=>w=—-w A\J
TN
g<0:>w:w\ A
A

Attracting and sliding

. dg . dg
lim — <0, lim —
(r,0)—(r«,0),g>0 dt (r,0)—(r«,0x),g<0 dt

J

—m—

lim dg > dg
(r, 9)—>(r*,6 ).9>0 df " (r, 9)—>(r*,6 ).9<0 df

State variables and discontinuity surface

state (r, 6)

discontinuity is described by
g(r, 0) = v{VD(r); &0)) +px[d(x,y) — do] =0

ag -
9 _ 2p vD(r
- =2 ¢ P €) + Vo (

5 D"& 8
“2°|vD) o)

VDl

dx

éJ_> +HE

w
— -, Sgnv-sgng

greater field value
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T pO()OT'd HEU3BECTHBIM IIOJIEM

Robot’s model

F=vé), 6 =w

r= 3], = (28]

sin 0

w = —wsgn[d + ux(d — &)] = —wsgng
I
g>0=>w=—-w A\J
TN
g<0:>w:w\ A
A

Attracting and sliding

. dg . dg
lim — <0, lim —
(r,0)—(r«,0),g>0 dt (r,0)—(r«,0x),g<0 dt

J

—m—

lim dg > dg
(r, 9)—>(r*,6 ).9>0 df " (r, 9)—>(r*,6 ).9<0 df

State variables and discontinuity surface

state (r, 6)

discontinuity is described by
g(r, 0) = v{VD(r); &0)) +px[d(x,y) — do] =0

ag -
9 _ 2p vD(r
- =2 ¢ P €) + Vo (

5 D"& 8
“2°|vD) o)

VDl

dx

éJ_> +HE

w
— -, Sgnv-sgng

greater field value
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HBIM IIOJIEM

field gradient
Fiansopysy iy papaaRsey
A A A A A O\

S OO0 e
e & RN
0T esT T o0 o5 m

d+px(d—dp) = ?

OHOMHa# HaBUTaUA



. HEU3BECTHBIM IIOJIEM

field gradient
o  F oo
sl P TNENN

05 A AAT~
e
RN NNl 4

ol

N
P e SRR
B Tananh Ik Ak e

ETRET] 00 [ 10

v(VD; &) + px(d — do) = 7
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. HEU3BECTHBIM IIOJIEM

field gradient

10 )/r///f A//l/«/v\\\
~ A A P TNENN

S
P e LN R S

G0 s [ R GRS T]

v <VD; §> + px(d —do) =

TOHOMHa# HaBUTalUA



3axBaT pobOTAa HEMZBECTHBIM IOJIEM

field gradient
field gradient
10 )/'///f f/////m\\
il A A= N

e
oSO e

oA
A A A AR R

G0 s [ R GRS T]

v <VD; §> + px(d —do) =

OHOMHa# HaBUTalUA



HBIM IIOJIEM

field gradient
- field gradient
10 /r/r///f f/////\\\
il A A= N

In any simply connected domain

If VD # 0 and is continuous, then there exists
a continuous function «(r) (polar angle) such

that VD(r) = ||VD(r)|| [cysam]

sin a(r)

X
PGl N\ S

G0 s [ R GRS T]

v <VD; §> + px(d —do) =
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. HEU3BECTHBIM IIOJIEM

field gradient
- field gradient
10 /r/r///f f/////\\\
il A A= N

In any simply connected domain

If VD # 0 and is continuous, then there exists
a continuous function «(r) (polar angle) such

that VD(r) = ||VD(r)|| [cysam]

sin a(r)

P e S R

G0 s [ R GRS T]

v <VD; §> + px(d —do) =

angle between éand VD = polar angle of & — polar angle of VD

DHOMHaA HaBUCALUA



. HEU3BECTHBIM IIOJIEM

field gradient
- field gradient
10 /r/r///f f/////\\\
il A A= N

In any simply connected domain

If VD # 0 and is continuous, then there exists
a continuous function «(r) (polar angle) such

that VD(r) = ||VD(r)|| [cysam]

sin a(r)

P e S R

G0 s [ R GRS T]

v <VD; §> + px(d —do) =

angle between €and VD = polar angle of € — a(r)
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HBIM IIOJIEM

field gradient
- field gradient
10 ),///f f/////\\\
il A A= N

In any simply connected domain

If VD # 0 and is continuous, then there exists
a continuous function «(r) (polar angle) such

that VD(r) = ||VD(r)|| [C?sa(r)]

sin a(r)

X
PGl N\ S

G0 s [ R GRS T]

v <VD; §> + px(d —do) =

angle from VD to @

time

full turn

+271

angle between €and VD = polar angle of € — a(r)

-2

HaBUranusa



Autonomous Navigation of a Non-Holonomic Robot for 3D ady Environmental Boundarie:

P=vi, Z—u @n=0, |ul<T
u:rffql}‘@r:@;f)/\q:f{u;l?)

Here (-;-) is the inner product,
q is the pitch and r is the yaw rate
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obot for 3D Tracking Unsteady Environmental Boundar

Autonomous Navigation of a Non-Holonomic

Mission description

D Time-varying scalar field d = D(t, r)
D Moving and deforming isosurface Si(dp) := {r: D(t,r) = do}

Q Find, arrive at, and then repeatedly sweep the isosurface within a
given range of altitudes [h_, hy]

= d“ = 200
F=vi, Z=u, D=0, |ul<T

u:rffql}‘@r:@;f)/\q:f{u;l?) &

0

100

Here (-;-) is the inner product,
q is the pitch and r is the yaw rate
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Autonomous Navigation of a Non-Holonomic

> daz —
F=vi, —=u, (47)=0, |u|<T

u:rffql_(‘@r:<u;f>/\q:7<u;l?>

Here (-;-) is the inner product,
q is the pitch and r is the yaw rate

obot for 3D Tracking Unsteady Environmental Boundar

Mission description

D Time-varying scalar field d = D(t, r)
D Moving and deforming isosurface Si(dp) := {r: D(t,r) = do}

Q Find, arrive at, and then repeatedly sweep the isosurface within a
given range of altitudes [h_, hy]

200
Necessary conditions for trackability of the isosurface
100
are given in terms of its front speed and
0 acceleration, principal curvature, rate of rotation,
290 =3 density of isolines and the rates of its change

0 50
-100.199-50

ABTOHOMHas HaBUTALUA




Autonomous Navigation of a Non-Holonomi

7 Environmental Boundarie;

Mission description

D Time-varying scalar field d = D(t, r)
D Moving and deforming isosurface Si(dp) := {r: D(t,r) = do}

Q Find, arrive at, and then repeatedly sweep the isosurface within a
given range of altitudes [h_, hy]

; ar 200
r=vz,  —=u (Uz) =0, "||u||-<u
at Necessary conditions for trackability of the isosurface
u=rj—gk<=r=(ujyrqg=—(uk) & . . .
are given in terms of its front speed and
SN = 0 acceleration, principal curvature, rate of rotation,
H(_ere (- -)_1s che nner product, £90 56 density of isolines and the rates of its change
q is the pitch and r is the yaw rate 1100.399-50 ©

Control law:
switching

ift=T, ift=T,

and h < A=}he

up

whenever h > h,

whenever h < h_
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Autonomous Navigation of a Non-Holonomi ady Environmental Boundarie:

Mission description

D Time-varying scalar field d = D(t, r)
D Moving and deforming isosurface Si(dp) := {r: D(t,r) = do}

Q Find, arrive at, and then repeatedly sweep the isosurface within a
given range of altitudes [h_, hy]

3 az = 200
F=vi, —=u, (47)=0, |u|<T

Necessary conditions for trackability of the isosurface

u=rj—qgk & r={(ujyrqg=—(uk) & - . -
are given in terms of its front speed and

N 3 0 acceleration, principal curvature, rate of rotation,

I;?;etlg'e’ gléi;k;l:in??; ‘Ic)}zzfill;cvz’rate 0 density of isolines and the rates of its change

Control law:
switching

Control law: continuous regulation

ift=T, ift=T,

and h < A=}he

Vyert := 010 P, Vyert := Vhin U, Vyert := — V4 in D
u=—Tp- sgn[h = vvm] hy , + Tg - Sgn {d + px(d — do)} hy, x7

up

whenever h > h,

where Vp, Ug, Up, o are controller parameters, hy_, is the projection of the vertical

whenever h < h_ vector onto the yaw-pitch plane of the robot normalized to the unit length

ABTOHOMHas HaBUTALUA



Zoo of some elaborated applications

@ Searching, circumnavigating, and following both single and multiple unpredictably maneuvering targets by a
single robot and robotic team

o Distributed control, effective self-distribution
o Kinematics (nonholonomy, underactuation) and dynamics constraints

3D container

@ Tight surface scan by a mobile robot

mEecEn
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Zoo of some elaborated applications

Environmental extremum seeking in 2D and 3D by single and multiple robots, both steady and dynamic fields,
kinematics (e.g., nonholonomy and underactuation) and dynamics constraints

@ Tracking environmental level sets in 2D and 3D by single and multiple robots, maze-like environments

@ Border patrolling and obstacle avoidance; moving and deforming obstacles

m——
3D navigation in tunnel-like environments,

Decentralized sweep boundary coverage

Distributed self-deployment of robotic networks; barrier and sweep coverage
Autonomous unmanned helicopter in unknown urban environments

Multiple wheeled robots in unknown cluttered environments/ Unmanned agricultural tractor / Motorized
mobile hospital bed

ABTOHOMHas HaBUTALUA



Sweep coverage of corridor environments with an obstacle course

%
w/2

corridor wall

L4

Z

obstacles

| .
sV

cross gection

-
-—
) —
-

T

Control law inspired by collective behavior of animal spieces

—w/2 corridor wall
@ Cannot distinguish among the peers M
Vi = T[x;
@ No communication facilities i |N/ ]g\f: [ —
@ Cannot play distinct roles Vy _ =[d*] - Z[d]
i,ol = =l"is
°

(]

Unaware of the team’s size and the h _ h "
corridor width +/I'2?\f)f ;= vilw; +f25?, y; — yilw;",
The obstacles are unknown

Has access to the corridor direction and
relative positions of the objects within a
finite distance if the view of the object is
unobstructed by an obstacle.
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Finish

e

Do collggues, doond yoe o yonr dond
allereliore

e cryoy the vt of e nceting.
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