Алгоритмы стохастической оптимизации и консенсуса для группы распределенных агентов, выполняющих общую задачу в условиях неопределенностей

Автор: Чернов Андрей Олегович **Научный руководитель:** д.ф.-м.н., проф. О. Н. Граничин

Санкт-Петербургский государственный универистет

15.09.2025

Мультиагентные системы

- Энергетика
- Сетевая безопасность
- Управление ресурсами и планирование
- Логистика
- Медицина
- Робототехника

А. О. Чернов (СПбГУ)

Управление группой

- Централизованное
 - Базовая станция собирает данные от всех роботов, вырабатывает управляющее воздействие и передает его каждому роботу
 - Недостатки:
 - Высокая вычислительная нагрузка
 - Высокая коммуникационная нагрузка
 - Разрывы связи между роботом и базовой станцией критичны
- Децентрализованное
 - Робот обменивается информацией с соседями и самостоятельно определяет управляющее воздействие
 - Неточности из-за задержек и разрывов связи между некоторыми роботами могут быть преодолены
 - Основная проблема сложность реализации

(ロ) (回) (目) (目) (目) (O)

Цели и задачи

Целью работы является разработка алгоритмов управления группой распределенных агентов, выполняющих общую задачу в условиях помех в наблюдениях и переменной топологии связей.

Для достижения поставленной цели были выделены следующие задачи:

- Разработать такую модель взаимодействия агентов распределенной системы друг с другом, а также этой с человеком, которая позволит управлять всей системой как единой сущностью
- Разработать адаптивный метод управления агентами распределенной системы, который позволит им поддерживать жесткую формацию в условиях неопределенностей
- Разработать метод для распределенного онлайн-оценки параметров агентов системы в условиях неопределенностей

< ロ ト < 個 ト < 重 ト < 重 ト) 重 り < @

Задача управления

 $x_t^i \in \mathbb{R}^d$ – вектор состояния каждого из n роботов

 $X_t \in \mathbb{R}^{nd}$ — общий вектор состояния системы, состоящий из x_t^i

 $X_t^* \in \mathbb{R}^{nd}$ — целевая траектория, описывающая требуемое движение группы роботов Задается класс стратегий управления $\mathcal U$

Требуется выбрать управляющие стратегии $\{u_t^i\},\ i=1...n,$ которые решают оптимизационную задачу

$$J(\{u_t^i\}) = \int_0^T \|X_t - X_t^*\| dt \to \min_{\{u_t^i\} \in \mathcal{U}}$$

Линейно-квадратичная задача в дискретном времени

Динамика робота в общем случае:

$$x_{t+1}^{i} = A_{t}^{i} x_{t}^{i} + B_{t}^{i} u_{t}^{i} + w_{t+1}^{i}$$

 A_t^i – матрица перехода состояния

 B_t^i — матрица управления состоянием

 w_t^i — возмущение

 x_0^i — начальные значения

 \mathcal{U} – класс ограниченных стратегий управления, т.е. $\|u_t^i\| \leq c_u$

 $\mathit{Требуемся}$ выбрать управляющие стратегии $\{u_t^i\}$:

$$J_0(\{u_t^i\}) = \sum_{t=0}^T (X_t - X_t^*)^T Q(X_t - X_t^*) \to \min_{\{u_t^i\} \in \mathcal{U}},$$

где Q — положительно-определенная матрица

Частично-централизованное управление

На практике при управлении группой роботов полезно рассматривать следующий тип стратегий управления:

$$u_t^i = \chi_t^i U_t + \bar{u}_t^i$$

 $\chi_t^i \in \{0,1\}$ – индикатор приема сигнала

 U_t – "глобальное" управление от базовой станции (решает задачу следования по общей траектории)

 \bar{u}_t^i – "локальное" управление (решает задачу поддержания формации)

Глобальное управление

 U_t может задаваться оператором или рассчитываться базовой станцией. Например, в статье

обосновано применение MPC для расчета U_t общего для всей группы, поддерживающей некоторую формацию, в том смысле, что

$$J_0(\{U_t\}) \leq J_0^* + \epsilon,$$

где $\{U_t\}$ – решение задачи МРС низкой размерности для обеспечения движения центра группы вдоль заданной траектории, $J_0^* = \operatorname{argmin}(J_0(\{u_t^i\}))$, ϵ – некоторый уровень субоптимальности.

A. O. Чернов (СПбГУ) 15,09,2025 8

Динамическая сеть роботов

 $\mathcal{G}_t = (\mathcal{N}, \mathcal{E}_t)$ – изменяющийся во времени граф, сеть роботов $\mathcal{N} = \{1, 2, ..., n\}$ – вершины графа, роботы $\mathcal{E}_t \subseteq \mathcal{N} \times \mathcal{N}$ – ребра графа, наличие связи для обмена информацией между роботами

Предположение

Граф G_t является связным в среднем: для любой пары вершин $(i,j) \in \mathcal{N}$ в усредненном графе существует по крайней мере один путь, соединяющий их в течение некоторого интервала времени

9/24

А. О. Чернов (СПбГУ)

Поддержание формации

Протокол локального голосования:

$$\bar{u}_t^i = \gamma \sum_{j \in \mathcal{N}_t^i} b^{i,j} (x_t^j - x_t^i)$$

 γ — размер шага протокола \mathcal{N}_{t}^{i} — множество соседей агента i $b_{t}^{i,j}$ — вес связи между агентами i и j

Локальное управление

Простейший случай локального управления:

$$\bar{u}_t^i = ([\bar{u}_x]_{t+1}^i, [\bar{u}_y]_{t+1}^i, [\bar{u}_z]_{t+1}^i, [\bar{u}_h]_{t+1}^i)$$

 $[\bar{u}_x]_{t+1}^i, [\bar{u}_y]_{t+1}^i$ — синхронизация по горизонтальному положению $[\bar{u}_z]_{t+1}^i$ — синхронизация по высоте $[\bar{u}_h]_{t+1}^i$ — синхронизация по курсу

Синхронизация по высоте и курсу

Синхронизация по высоте:

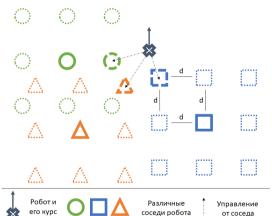
$$[\bar{u}_z]_{t+1}^i = \gamma_z \sum_{j \in \mathcal{N}_t^i} (z_t^j - z_t^i),$$

Синхронизация по курсу:

$$[\bar{u}_h]_{t+1}^i = \gamma_h \sum_{j \in \mathcal{N}_t^i} (h_t^j - h_t^i),$$

Замечание: $h_t^i \in (-180^\circ; 180^\circ]$

Синхронизация по горизонтальному положению



 $\begin{cases} [\bar{u}_x]_{t+1}^i = \gamma_{xy} \sum_{j \in \mathcal{N}_t^i} (\hat{x}_t^j - x_t^i) \\ [\bar{u}_y]_{t+1}^i = \gamma_{xy} \sum_{j \in \mathcal{N}_t^i} (\hat{y}_t^j - y_t^i) \end{cases}$

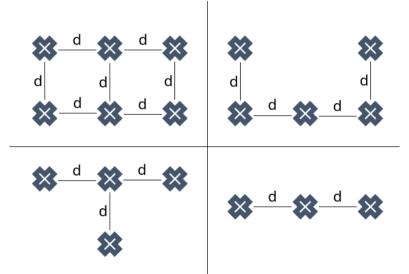
где $(\hat{x}_t^j, \hat{y}_t^j)$ – лучшая предложенная соседом позиция

Лучшая предложенная соседом позиция

А. О. Чернов (СПбГУ)

позиции

Примеры возможных формаций



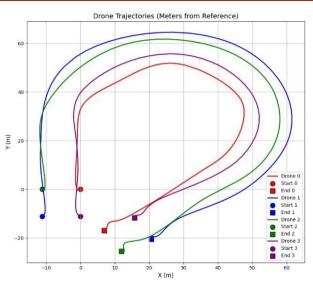
Используемые технологии

• Автопилот: Ardupilot

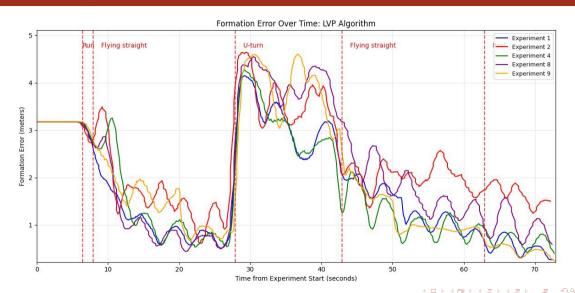
• Коммуникация: ESP32 + ESP-NOW

• Симуляция: SITL-Ardupilot

Пример траектории



Ошибки управления

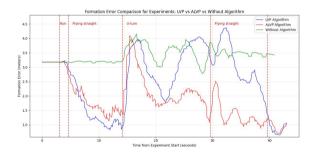


Ускоренный протокол локального голосования

Ускорение по методу Нестерова:

- С учетом инерции вычисляется "опережающая"точка
- Шаг алгоритма выполняется из вычисленной точки

Алгоритм	Ср. ошибка		
Без коррекции	3.36 м		
LVP	1.93 м		
ALVP	1.31 м		

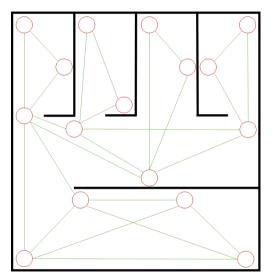


18/24

Определение взаимного расположения устройств

Задача: определить взаимное положение устройств, способных определять расстояние до некоторых соседних устройств

- Красные круги устройства, чье положение относительно друг друга надо определить;
- Зеленые линии связь между устройствами (для обмена информацией и определения расстояний друг до друга)



19/24

Модель наблюдения

 θ_t — общий вектор состояния, состоящий из c_t^i — координат i-ого устройства $\hat{\theta}_t^i$ — оценка общего вектора состояния i-ым устройством, состоящая из $\hat{c}_t^{i,j}$ — оценок координат устройства j устройством i $d_t^{i,j} = \|c_t^i - c_t^j\| + w_t^{i,j}$ — расстояние между устройствами i и j, измеренное устройством i, где $w_t^{i,j}$ — помехи при измерении Функция потери:

$$F_{j,k}^{i}(\hat{c}_{t}^{i,j}) = \|((C_{t}^{i,j})^{T}C_{t}^{i,j})'(C_{t}^{i,j})^{T}C_{t}^{i,j}\hat{c}_{t}^{i,j} - ((C_{t}^{i,j})^{T}C_{t}^{i,j})'(C_{t}^{i,j})^{T}D_{t}^{i,j,k}\|^{2},$$

где $C_t^{i,j}=2(\hat{c}_{t-1}^{i,j}-\hat{c}_{t-1}^{i,i})$ и $D_t^{i,j,k}=\|\hat{c}_{t-1}^{i,j}\|^2-\|\hat{c}_t^{i,i}t-1\|^2+(d_t^{i,k})^2-(d_t^{j,k})^2.$ Модель наблюдения:

$$y_t^i(\hat{\theta}_t^i) = \frac{1}{|\mathcal{V}_t^i|} \sum_{(j,k) \in \mathcal{V}_t^i} F_{j,k}^i(\hat{c}_t^{i,j}),$$

где \mathcal{V}_t^i – множество пар (j,k) таких, что $j,k\in\mathcal{N}_t^i,\,k\in\mathcal{N}_t^j$ и $j\neq k$.

А. О. Чернов (СПбГУ)

Алгоритм SPSA, совмещенный с консенсусом

$$\begin{cases} x_{2k}^{i} = \hat{\theta}_{2k-2}^{i} + \beta \Delta_{k}^{i} \\ x_{2k-1}^{i} = \hat{\theta}_{2k-2}^{i} - \beta \Delta_{k}^{i} \\ \hat{\theta}_{2k-1}^{i} = \hat{\theta}_{2k-2}^{i} \\ \hat{\theta}_{2k}^{i} = \hat{\theta}_{2k-1}^{i} - \alpha (\Delta_{k}^{i} \frac{y_{2k}^{i} - y_{2k-1}^{i}}{2\beta} + \gamma \sum_{j \in \mathcal{N}_{2k-1}^{i}} b_{2k-1}^{i,j} (\hat{\theta}_{2k-1}^{j} - \hat{\theta}_{2k-1}^{i})) \end{cases}$$

где $\hat{\theta}_k^i$ — оценка неизвестного параметра θ , y_k^i — зашумленное наблюдение, Δ_k^i — вектор, элементы которого принимают значение 1 или —1 с равной вероятностью, α , β и γ — положительные коэффициенты.

Теорема

Последовательность оценок, доставляемых алгоритмом, имеет асимптотически-эффективную верхнюю границу $L=\frac{h+\sqrt{h^2+l\mu}}{\mu}$, где $\mu=2\gamma\lambda_2-\alpha(p_1\gamma^2+\alpha(2\gamma c_1+c_2))$, $h=\gamma c_3+c_4$, $l=\alpha\gamma^2\sigma_w^2+c_5$ и c_1-c_5 – определенные особым образом константы, при выполнении некоторых предположений

Эксперимент

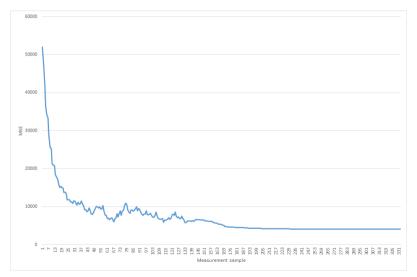
- Эксперименты проводились на ESP32
- Расстояние между устройствами измерялось при помощи RSSI
- Погрешность при измерении расстояния ок. 20%

Пара	Ошибка	Пара	Ошибка	Пара	Ошибка
1&2	1.5%	2&4	1.0%	3&7	3.4%
1&3	1.2%	2&5	4.7%	4&5	2.0%
1&4	1.7%	2&6	0.8%	4&6	0.4%
1&5	4.6%	2&7	0.7%	4&7	0.7%
1&6	0.5%	3&4	4.0%	5&6	1.1%
1&7	2.0%	3&5	2.6%	5&7	2.4%
2&3	3.1%	3&6	2.7%	6&7	1.0%

- Итерация алгоритма позиционирования выполнялась каждые 500 мс
- Устройства не были синхронизированы между собой

ロト 4回 トイミト イミト ミ りくぐ

Ошибка оценки местоположения



Результаты

В ходе работы были получены следующие результаты:

- Предложена модель управления распределенной системой агентов, включая модель взаимодействия такой системы с человеком
- Разработан метод консенсусного управления агентами, выполняющими общую задачу в условиях помех в наблюдениях и переменной топологии связей, поддерживающий заданную формацию
- Рандомизированный алгоритм стохастической оптимизации, совмещенный с консенсусом, применен для распознавания параметров распределенных мультиагентных систем в условиях помех в наблюдениях и переменной топологии связей