О ДОСТАТОЧНОСТИ УСЛОВИЙ КУНА-ТАККЕРА

B. H. Малозёмов v.malozemov@spbu.ru

10 апреля 2022 г.

1°. Пусть $a_1(x), \ldots, a_s(x)$ — выпуклые дифференцируемые на \mathbb{R}^n функции, f(x) — вогнутая дифференцируемая на \mathbb{R}^n функция, $A-m \times n$ -матрица, b-m-мерный вектор. Рассмотрим экстремальную задачу

$$f(x) \to \max,$$

$$a_i(x) \le 0, \quad i \in 1: s,$$

$$Ax = b.$$
(1)

Обозначим через Ω множество планов задачи (1) (точек x, удовлетворяющих ее ограничениям).

ОПРЕДЕЛЕНИЕ. Говорят, что в точке $x_0 \in \Omega$ выполняются условия Куна-Таккера, если существуют векторы $u \in \mathbb{R}^n$ и $v \in \mathbb{R}^s$, такие, что

$$f'(x_0) = \sum_{i=1}^{s} v_i a_i'(x_0) + A^T u,$$
(2)

$$v_i a_i(x_0) = 0, \quad i \in 1:s,$$
 (3)

$$v_i \geqslant 0, \quad i \in 1:s. \tag{4}$$

Условие (2) называется условием Лагранжа, условие (3) — условием дополнительности, условие (4) — условием неотрицательности.

TEOPEMA (о достаточности условий Куна-Таккера). Если в точке $x_0 \in \Omega$ выполняются условия Куна-Таккера, то x_0 — решение задачи (1).

 2° . Доказательство теоремы опирается на следующую лемму.

ЛЕММА (о критерии выпуклости дифференцируемой функции). Для того, чтобы дифференцируемая на \mathbb{R}^n функция p(x) была выпуклой, необходимо и достаточно, чтобы при любых x_0 , x_1 выполнялось неравенство

$$p(x_1) - p(x_0) \geqslant \langle p'(x_0), x_1 - x_0 \rangle. \tag{5}$$

Доказательство. Необходимость. При $x_1 = x_0$ утверждение тривиально, поэтому считаем, что $x_1 \neq x_0$. По определению выпуклости при $t \in (0,1)$ имеем

$$p(x_0 + t(x_1 - x_0)) \le p(x_0) + t[p(x_1) - p(x_0)]. \tag{6}$$

В силу дифференцируемости функции p(x) справедливо соотношение

$$p(x_0 + t(x_1 - x_0)) = p(x_0) + t\langle p'(x_0), x_1 - x_0 \rangle + o(||t(x_1 - x_0)||).$$
 (7)

Из (6) и (7) следует, что

$$p(x_1) - p(x_0) \geqslant \langle p'(x_0), x_1 - x_0 \rangle + \frac{o(\|t(x_1 - x_0)\|)}{\|t(x_1 - x_0)\|} \cdot \|x_1 - x_0\|.$$

Переходя в этом неравенстве к пределу при $t \to +0$, получаем (5). Достаточность. Зафиксируем точки $x_0, x_1,$ число $t \in [0, 1]$ и положим

$$x(t) = tx_1 + (1 - t)x_0.$$

Согласно (5) имеем

$$p(x_1) - p(x(t)) \geqslant \langle p'(x(t)), x_1 - x(t) \rangle, \tag{8}$$

$$p(x_0) - p(x(t)) \geqslant \langle p'(x(t)), x_0 - x(t) \rangle. \tag{9}$$

Умножим неравенство (8) на t, неравенство (9) — на (1-t), после чего сложим их (в столбик). Приняв во внимание определение x(t), получим

$$tp(x_1) + (1-t)p(x_0) - p(x(t)) \ge \langle p'(x(t)), tx_1 + (1-t)x_0 - x(t) \rangle = 0.$$

Значит,

$$p(x(t)) \leq tp(x_1) + (1-t)p(x_0).$$

Выпуклость функции p(x) установлена.

3°. Переходим к доказательству теоремы. Нужно проверить, что $f(x) \leq f(x_0)$ при всех $x \in \Omega$.

По условию функция f(x) — вогнутая (это значит, что -f(x) — выпуклая функция). Для нее справедливо неравенство

$$f(x) - f(x_0) \leqslant \langle f'(x_0), x - x_0 \rangle.$$

Пусть $x \in \Omega$. На основании условия Лагранжа (2) запишем

$$f(x) - f(x_0) \leqslant \left\langle \sum_{i=1}^{s} v_i a_i'(x_0) + A^T u, x - x_0 \right\rangle =$$

$$= \left\langle \sum_{i=1}^{s} v_i a_i'(x_0), x - x_0 \right\rangle + \left\langle u, Ax - Ax_0 \right\rangle = \sum_{i=1}^{s} v_i \left\langle a_i'(x_0), x - x_0 \right\rangle.$$

В силу выпуклости функций $a_i'(x)$ при всех $i \in 1: s$ имеем

$$\langle a_i'(x_0), x - x_0 \rangle \leqslant a_i(x) - a_i(x_0). \tag{10}$$

Вспомним, что по условию неотрицательности (4) все v_i неотрицательны. Умножим неравенство (10) на v_i и используем результат для продолжения оценки разности $f(x) - f(x_0)$. Получим

$$f(x) - f(x_0) \le \sum_{i=1}^{s} v_i (a_i(x) - a_i(x_0)) = \sum_{i=1}^{s} v_i a_i(x) - \sum_{i=1}^{s} v_i a_i(x_0).$$

По условию дополнительности (3) последняя сумма равна нулю. Остается

$$f(x) - f(x_0) \leqslant \sum_{i=1}^{s} v_i a_i(x).$$

Так как $x \in \Omega$, то $a_i(x) \le 0$ при всех $i \in 1$: s. Учитывая неотрицательность v_i , заключаем, что $f(x) - f(x_0) \le 0$.

Теорема доказана.