О ПОЛИЭДРАЛЬНЫХ НОРМАХ*

B. H. Малозёмов v.malozemov@spbu.ru

11 мая 2023 г.

1°. Пусть в пространстве \mathbb{R}^m заданы векторы c_1, c_2, \dots, c_p . Они порождают выпуклое многогранное множество V вида

$$V = \{ y \in \mathbb{R}^m \mid \langle c_k, y \rangle \leqslant 1 \text{ при всех } k \in 1 : p \}.$$
 (1)

Предполагается, что V — ограниченное множество.

Введем функцию Минковского

$$\mathcal{D}(y) = \inf\{\lambda > 0 \mid y/\lambda \in V\}.$$

Из определения следует, что $\mathcal{D}(\mathbf{0}) = 0$.

ЛЕММА 1. Справедливо равенство

$$\mathcal{D}(y) = \max_{k \in 1:p} \langle c_k, y \rangle. \tag{2}$$

Доказательство. При $y=\mathbf{0}$ равенство (2) тривиально. Допустим, что $y \neq \mathbf{0}$. Тогда $\langle c_k, y \rangle > 0$ хотя бы при одном k. Действительно, иначе $\langle c_k, y \rangle \leqslant 0$ при всех $k \in 1: p$ и $\langle c_k, ty \rangle \leqslant 0 \leqslant 1$ при всех $k \in 1: p$ и t > 0. Согласно (1), $ty \in V$ при всех t > 0, что противоречит ограниченности множества V. Теперь в силу (1) имеем

$$\mathcal{D}(y) = \inf \{ \lambda > 0 \mid \langle c_k, y \rangle \leqslant \lambda \ \forall k \in 1 : p \} = \max_{k \in 1:p} \langle c_k, y \rangle.$$

В частности, $\mathcal{D}(y) > 0$ при всех $y \neq \mathbf{0}$.

^{*}Семинар по оптимизации, машинному обучению и искусственному интеллекту «О&ML» $\verb|http://oml.cmlaboratory.com/|$

2°. Для справедливости равенства (2) существенна ограниченность множества V. Сформулируем критерий ограниченности V в терминах нормалей c_k . Обозначим через V^* выпуклую оболочку векторов c_1, c_2, \ldots, c_p . Множество V^* является ограниченным, выпуклым и замкнутым.

ЛЕММА 2. Для того чтобы множество V вида (1) было ограниченным, необходимо и достаточно, чтобы начало координат было внутренней точкой множества V^* , $\mathbf{0} \in \text{int } V^*$.

Доказательство. Необходимость. Допустим противное, что точка $y = \mathbf{0}$ лежит либо на границе множества V^* , либо вне V^* . В обоих случаях по теореме отделимости найдется вектор $g \neq \mathbf{0}$ со свойством: $\langle y, g \rangle \leqslant 0$ при всех $y \in V^*$. В частности, $\langle c_k, g \rangle \leqslant 0$ при всех $k \in 1$: p. Отсюда следует, что $tg \in V$ при всех t > 0. Но это противоречит ограниченности множества V.

Достаточность. Зафиксируем вектор $y \in V, y \neq \mathbf{0}$. Имеем $\langle c_k, y \rangle \leqslant 1$ при всех $k \in 1$: p. Нетрудно понять, что и $\langle z, y \rangle \leqslant 1$ при всех $z \in V^*$. Обозначим $B_\delta = \left\{z \in \mathbb{R}^m \mid \|z\| \leqslant \delta\right\}$, где $\|z\| -$ евклидова норма вектора z. По условию теоремы, $B_\delta \subset V^*$ при некотором $\delta > 0$. Значит, $\langle z, y \rangle \leqslant 1$ при всех $z \in B_\delta$. Подставив в это неравенство $z = \delta y/\|y\|$, получим $\|y\| \leqslant 1/\delta$. Нулевой вектор y, принадлежащий множеству V, также удовлетворяет этому неравенству.

Лемма доказана.

Имеется эквивалентный вариант критерия ограниченности множества V вида (1).

ЛЕММА 3. Условие **0** \in int V^* выполняется тогда и только тогда, когда для любого ненулевого вектора $y \in \mathbb{R}^m$ найдется нормаль c_k , такая, что $\langle c_k, y \rangle > 0$.

Доказательство. Пусть $\mathbf{0} \in \operatorname{int} V^*$ и $B_\delta \subset V^*$ при некотором $\delta > 0$. Возьмем ненулевой вектор $y \in \mathbb{R}^m$. Положим $\hat{y} = \delta y/\|y\|$. Ясно, что $\hat{y} \in V^*$. По определению выпуклой оболочки найдутся неотрицательные числа $\alpha_1, \alpha_2, \ldots, \alpha_p$, в сумме равные единице, при которых

$$\hat{y} = \sum_{k=1}^{p} \alpha_k c_k.$$

Запишем

$$\delta^2 = \langle \hat{y}, \hat{y} \rangle = \sum_{k=1}^p \alpha_k \langle c_k, \hat{y} \rangle.$$

В силу положительности δ^2 в сумме должно быть хоть одно положительное слагаемое. Пусть это будет $\alpha_{k_0}\langle c_{k_0}, \hat{y}\rangle$. При этом $\alpha_{k_0} > 0$. Значит, и $\langle c_{k_0}, y \rangle > 0$.

Проверим обратное утверждение. Покажем, что из того, что для любого ненулевого вектора $y \in \mathbb{R}^m$ найдется нормаль c_k со свойством $\langle c_k, y \rangle > 0$, следует включение $\mathbf{0} \in \operatorname{int} V^*$. Допустим противное. Тогда по теореме отделимости найдется ненулевой вектор $g \in \mathbb{R}^m$, такой что $\langle y, g \rangle \leqslant 0$ для всех $y \in V^*$. В частности, $\langle c_k, g \rangle \leqslant 0$ при всех $k \in 1$: p. Но это противоречит допущению. Лемма доказана.

3°. Вернемся к функции Минковского $\mathcal{D}(y)$, порожденной ограниченным многогранным множеством V вида (1). Как показано в п. 1°, функция $\mathcal{D}(y)$ обладает такими свойствами:

$$\mathcal{D}(\mathbf{0}) = 0, \ \mathcal{D}(y) > 0 \ \text{при } y \neq \mathbf{0}. \tag{3}$$

Кроме того, для $\mathcal{D}(y)$ справедливо представление (2). Из (2) и свойств максимума следует, что

$$\mathcal{D}(ty) = t\mathcal{D}(y) \text{ при } t \geqslant 0, \tag{4}$$

$$\mathcal{D}(y_1 + y_2) \leqslant \mathcal{D}(y_1) + \mathcal{D}(y_2). \tag{5}$$

Соотношения (3), (4), (5) показывают, что функция $\mathcal{D}(y)$ является нормой в пространстве \mathbb{R}^m . Эта норма называется *полиэдральной нормой*.