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Работа лежит в русле исследований, основы которых были заложены и развиты в рабо-
тах И.И.Еремина, В.В.Васина, Л.Д.Попова, Е.А. Бердниковой, И.М.Соколинской, А.В.Ершовой,
Е.А.Нурминского и других. Основным результатом является новый вариант фейеровского отображения
для нахождения неотрицательного решения системы линейных алгебраических уравнений. Указанное
отображение объединяет операцию ортогонального проектирования вектора в линейное подпространство
решений системы линейных алгебраических уравнений и операцию проектирования вектора на неотрица-
тельный ортант, но не с помощью традиционной операции положительной срезки, а с помощью поэлемент-
ной операции вычисления абсолютного значения. Доказана глобальная линейная сходимость полученного
алгоритма и оценена его константа асимптотики. Вычислительные эксперименты демонстрируют значи-
тельно более быструю сходимость изученного отображения по сравнению с отображением с использова-
нием операции положительной срезки. Представлены описание алгоритма, его теоретическое обоснование
и результаты вычислительных экспериментов.
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Введение

Теория, методы и практические приложения линейного программирования (ЛП), нача-
тые в новаторских работах Л.В.Канторовича, не остались в прошлом — они развиваются в
наши дни, когда к многочисленным экономическим, техническим и военным приложениям
присоединились задачи, связанные с проблемами создания систем искусственного интеллек-
та и обработки больших объемов данных. При исследовании указанных проблем возникает
необходимость решения задач ЛП высокой размерности (сотни тысяч, миллионы переменных
и ограничений). Задачи такого масштаба не поддаются решению с помощью комбинаторных
алгоритмов, таких как метод последовательного улучшения плана или симплекс-метод, и вни-
мание исследователей обращается к методам с теоретически обоснованной полиномиальной

1Результаты разд. 7 получены в Институте проблем машиноведения РАН за счет Российского на-
учного фонда (проект № 23-41-00060).
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временной сложностью (или линейной и более высокой скоростью сходимости), к которым
относятся алгоритмы внутренних точек и фейеровские отображения. В данной работе мы
рассматриваем важную частную задачу линейного программирования — задачу построения
неотрицательного решения системы линейных алгебраических уравнений (СЛАУ) с использо-
ванием быстрого итерационного алгоритма фейеровского типа.

1. Предыстория

Рассматриваемый алгоритм и соответствующее отображение фейеровского типа были от-
крыты экспериментально при решении производственной задачи согласования материального
баланса химического предприятия с непрерывным производственным циклом [1; 2].

Уравнения материального баланса предприятия представляют собой СЛАУ

Ax = b, (1.1)

где A ∈ R
m×n, b ∈ R

m, b 6= 0, m 6 n, 1 6 rankA 6 m. Задача согласования материального
баланса (в упрощенной постановке) заключается в том, чтобы найти неотрицательное реше-
ние x ∈ R

n системы (1.1), близкое, насколько это возможно, к заданному вектору xизм > 0,
составленному из измеренных значений массовых расходов соответствующих материальных
потоков.

В качестве способа приближенного решения указанной задачи был использован итераци-
онный алгоритм Гаусса— Ньютона [3, гл. 10, § 10.2], примененный к недоопределенной нели-
нейной системе уравнений

Adiag(y)y = b (1.2)

с начальным приближением y0 =
(

(xизм
1 )1/2, . . . , (xизм

n )1/2
)

⊤. Шаг алгоритма с номером k > 0
имел вид

yk = yk−1 +
1

2
Ã+

(

b−Adiag(yk−1)yk−1
)

, (1.3)

где Ã+ — матрица, псевдообратная к матрице Ã = Adiag(yk−1).
Если y — решение системы (1.2), то решение системы (1.1) имеет вид x = diag(y)y > 0.

Выбор стартовой точки y0, построенной на основе xизм, позволял получать решения, устраи-
вающие технологов и метрологов предприятия, т. е. в некоторой степени близкие к xизм.

Со временем, в процессе развития предприятия, увеличилось количество элементов техно-
логической схемы, усложнились ее топология и логика балансовых расчетов, что привело к
росту размерности системы (1.1). При этом стали более заметными недостатки алгоритма (1.3),
такие как отсутствие глобальной сходимости (приводящее к необходимости “ручной” кор-
ректировки начального приближения) и “тяжелый” (из-за наличия обязательного пересчета
матрицы Ã+), итерационный шаг, приводящий с ростом размерности задачи к существенному
увеличению времени работы алгоритма.

Для преодоления второго недостатка была рассмотрена нелинейная негладкая система
уравнений

A|x| = b,

где | · | — поэлементная операция взятия абсолютной величины, и экспериментально исследо-
вана возможность ее решения с помощью алгоритма Гаусса — Ньютона, аналогичного (1.3):

x0 = xизм; xk = xk−1 + Ā+
(

b−A
∣

∣xk−1
∣

∣

)

, k = 1, 2, . . . ; (1.4)

здесь Ā = Adiag(s), s = sign(xk−1), sign(·) — поэлементная операция взятия знака.
При условии, что вектор xk−1 не имеет нулевых элементов, трудоемкость пересчета мат-

рицы Ā+ и алгоритма в целом существенно снижается по сравнению с трудоемкостью алго-
ритма (1.3), так как

Ā+ = diag(s)A+, Ā+
(

b−A
∣

∣xk−1
∣

∣

)

= diag(s)A+
(

b−A
∣

∣xk−1
∣

∣

)

, (1.5)
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что можно легко показать с использованием, например, уравнений Мура— Пенроуза [4;5]. Не-
сложный анализ формул (1.5) показывает, что вычисление A+ может быть выполнено не на
каждом итерационном шаге, а только один раз, перед началом итерационного процесса. Для
оценки трудоемкости вычисления псевдообратной матрицы можно ориентироваться на оценки
трудоемкости распространенных алгоритмов решения СЛАУ методом наименьших квадратов,
приведенные, например, в [5, гл. 5, § 5.5.9] и [6, табл. 19.1, с. 93].

Но в общем случае вектор xk−1 имеет нулевые элементы и при “наивном” обнулении со-
ответствующих элементов вектора s формулы (1.5) неверны. Проблемы алгоритма (1.4) при
этом являются даже более глубокими и заключаются в том, что гарантирующие его сходи-
мость значения соответствующих элементов вектора s неочевидны и могут быть определены
только методами негладкого анализа (см., например [7;8]). Эксперименты с их “угадыванием”
не имели успеха, но привели к алгоритму (с “легким” итерационным шагом)

x0 = xизм; xk =
∣

∣xk−1 +A+(b−Axk−1)
∣

∣, k = 1, 2, . . . . (1.6)

Алгоритм (1.6) оказался работоспособным и на тестовых задачах (с реальными данными)
демонстрировал сходимость к решению при произвольном выборе начального приближения.
Кроме того, указанный алгоритм выполнялся существенно быстрее, чем алгоритм (1.3), хотя
затрачивал для нахождения решения большее количество шагов. При выборе xизм в качестве
начального приближения, так же как и для алгоритма (1.3), получались решения, в некоторой
степени близкие к xизм и устраивающие технологов и метрологов предприятия. Итерационный
шаг алгоритма (1.6) оказался “легким”, поскольку он не содержал операцию вычисления псев-
дообратной матрицы, выполняемую только один раз перед началом итерационного процесса.

Эксперименты с алгоритмом (1.6), в свою очередь, привели к появлению его модифициро-
ванного варианта, содержащего “параметр релаксации” λ > 0:

x0 = xизм; xk =
∣

∣xk−1 + λA+(b−Axk−1)
∣

∣, k = 1, 2, . . . . (1.7)

На тестовых задачах (с реальными данными) выбором λ > 1 удалось существенно умень-
шить количество шагов алгоритма (1.7) до значений, сопоставимых с количеством шагов ал-
горитма (1.3), что иллюстрирует рис. 1.
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Рис. 1. Евклидовы нормы пошаговых невязок алгоритмов (1.3), (1.6), (1.7) при решении задачи со-
гласования материального баланса, содержащей 136 уравнений и 285 неизвестных.



124 В.И.Ерохин, Г.Ш.Тамасян, Н.А.Степенко

В вычислительных экспериментах алгоритм (1.7) также находил некоторое неотрицатель-
ное решение системы (1.1) при произвольно выбранном начальном приближении, однако даже
при x0 = xизм оно уже могло оказаться “недостаточно близким” к xизм (не удовлетворяло
технологов и метрологов предприятия).

Полученные в отношении алгоритма (1.7) экспериментальные результаты, с одной стороны,
показали его ограниченное соответствие конкретной практической задаче согласования мате-
риального баланса. В то же время указанные результаты побудили провести теоретическое
исследование алгоритма (необходимые и достаточные условия сходимости, локальная сходи-
мость или глобальная, порядок сходимости и пр.), чтобы выявить, имеет ли данный алгоритм
потенциал для того, чтобы служить инструментом поиска неотрицательных решений СЛАУ,
востребованным как во многих прикладных задачах, так и в теории и методах линейного
программирования.

Ответы на поставленные вопросы удалось найти, установив, что алгоритмы (1.6) и (1.7)
принадлежат к классу M -фейеровских отображений.

2. Общие сведения о фейеровских отображениях

Фейеровские отображения являются обобщением сжимающих отображений, в котором по-
нятие неподвижной точки обобщается до множества неподвижных точек, а понятие сходи-

мости к точке — до понятия сходимости к множеству.

Системное исследование фейеровских отображений берет свое начало с работы
И.И.Еремина [9]. Историю дальнейших исследований по широкому кругу вопросов, связан-
ных с фейеровскими отображениями, можно проследить, например, по монографиям [10–14]
и обзору [15]. Укажем также работы недавнего времени [16–18].

Признанными достоинствами итерационных процессов, построенных на фейеровских отоб-
ражениях, являются следующие качества:

— возможность декомпозиции (решение систем уравнений, неравенств, задач ЛП и выпук-
лого программирования большой размерности, параллельные вычисления);

— глобальная линейная сходимость;
— устойчивость к ошибкам округления, самоисправляемость;
— возможность обработки динамических (изменяющихся во времени) данных;
— пригодность для ввода алгоритмов внутренних точек в допустимую область решаемой

задачи;
— возможность адаптации к решению широкого круга задач, в том числе поиска псевдоре-

шений несовместных систем линейных уравнений, неравенств и задач математического про-
граммирования.

Заметим, что характерной слабой стороной фейеровских отображений является медленная
сходимость. Внимание на этом недостатке не всегда акцентируется авторами соответствующих
исследований, но “между строк” (а также по времени счета и количеству итераций, приводи-
мых в соответствующих таблицах с результатами вычислительных экспериментов) оно просле-
живается в публикациях, рассматривающих вопросы построения вычислительных реализаций
фейеровских итерационных процессов с использованием техники параллельных вычислений
(см., например [19–24]). Преодоление указанного недостатка является (наряду с теоретически-
ми обоснованиями) одной из задач данной работы.

2.1. M-фейеровские отображения

Пусть D ⊆ R
n, ϕ : D −→ D — некоторое отображение. Обозначим через M множество

неподвижных точек отображения ϕ, т. е. M =
{

x ∈ D | ϕ(x) = x
}

.
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О п р е д е л е н и е 1. Отображение ϕ называется M -фейеровским, если множество M
непусто и выполняется строгое неравенство

‖ϕ(x) − y‖ < ‖x− y‖ ∀x ∈ D\M, ∀ y ∈ M. (2.1)

В неравенстве (2.1) и далее во всем тексте статьи будем считать, что символом || · || обозна-
чена евклидова векторная норма. Класс M -фейеровских отображений обозначим через FM .

Рассмотрим последовательность
{

xk
}

, которая строится по правилу

x0 ∈ D\M ;
xj+1 = ϕ(xj), j = 1, 2, . . . .

(2.2)

Приведем несколько свойств M -фейеровских отображений. Пусть {xk} построена по пра-
вилу (2.2) с помощью отображения ϕ ∈ FM .

С в о й с т в о 1. Если {xk} ∩ M = ∅, то xk −−−→
k→∞

y ∈ M . Иначе найдется такое k ∈ N,

что xj ∈ M при всех j > k.

С в о й с т в о 2. Отображение вида λϕ(x) + (1 − λ)x является M -фейеровским при
λ ∈ (0, 1).

С в о й с т в о 3. Пусть ϕj — соответствующие Mj-фейеровские отображения, j = 1 : m,
множество M =

⋂

j=1:m
Mj непусто. Отображения вида

ϕ(x) =
∑

j=1:m

λjϕj(x) при λj > 0,
∑

j=1:m

λj = 1,

ϕ(x) = ϕ1(ϕ2(. . . ϕm(x) . . .)),

являются M -фейеровскими.

2.2. Базовые конструкции M-фейеровских отображений для решения
систем линейных алгебраических уравнений и неравенств

Положим R
n
+ — неотрицательный ортант, [x]+ = max{0, x} — поэлементная операция по-

ложительной срезки вектора x ∈ R
n. Приведем несколько примеров базовых отображений,

используемых в дальнейшем.

Пример 1. Пусть X =
{

x ∈ R
n | Ax = b

}

— непустое множество решений системы
линейных алгебраических уравнений. Проекция произвольной точки x ∈ R

n на X задается
X-фейеровским отображением πX(x) = x+A+(b−Ax), где A+ — псевдообратная матрица.

Пример 2. Проекция произвольной точки x ∈ R
n на M = R

n
+ задается отображением

“срезка” C(x) = [x]+. Оно принадлежит классу FM , так как является частным случаем prox-
отображений (см. следствие 3.7 в монографии [13, разд. 3.3, гл. I]), и при этом

C(x) = argmin
{

‖x− y‖ : y ∈ M
}

.

Пример 3. Введем отображение CX+
(x) как суперпозицию отображений C(x) и πX(x), а

именно
CX+

(x) := C
(

πX(x)
)

=
[

x+A+(b−Ax)
]

+
, (2.3)

где X+ := R
n
+ ∩ X =

{

x ∈ R
n | Ax = b, x > 0

}

. В силу свойства 3 оно является X+-
фейеровским.

Отображение CX+
встречалось в работах [12–15;20–22], но не являлось предметом отдель-

ного теоретического и экспериментального исследования. В работах, использующих отобра-
жение CX+

, предполагалось, что матрица A исследуемой СЛАУ имеет полный строчный ранг,
в силу чего псевдообратная матрица может быть представлена в виде

A+ = A⊤
(

AA⊤
)−1

. (2.4)
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З а м е ч а н и е 1. Требование полноты строчного ранга матрицы A является избыточ-
ным, и в приводимых ниже теоретических выкладках не используется. При этом заметим, что
в случае неполноты ранга матрицы A формула (2.4) неприменима, и для вычисления псев-
дообратной матрицы необходимо использовать более общие методы (см., например, [5, гл. 5,
§ 5.5.4; 6]).

С другими конструкциями M -фейеровских отображений можно ознакомится в работе [13,
§ 1, гл. III]. Несложно убедиться, что приведенные выше отображения удовлетворяют условию
ϕ
(

ϕ(x)
)

= ϕ(x).

3. Два новых фейеровских отображения для поиска неотрицательного
решения СЛАУ: незначительно модифицированное “классическое”

(база сравнения) и “ускоренное” (основной предмет исследования)

Положим r(x) = b−Ax, λ > 0. Рассмотрим естественную модификацию отображения (2.3):

Cλ
X+

(x) :=
[

x+ λA+r(x)
]

+
. (3.1)

Ясно, что оно является параметризованным по λ семейством отображений, а при λ = 1 полу-
чаем отображение (2.3). В литературе число λ называют коэффициентом релаксации.

Введем еще одно отображение

Aλ
X+

(x) :=
∣

∣x+ λA+r(x)
∣

∣, (3.2)

где | · | — поэлементная операция взятия абсолютной величины.
Далее мы покажем, что отображения (3.1) и (3.2) являются X+-фейеровскими при

λ ∈ (0, 2). Отображение Cλ
X+

, учитывая публикации, посвященные его прототипу — отобра-
жению CX+

, будем считать “классическим” и рассматривать как базу для сравнения с новым,
“ускоренным”, отображением Aλ

X+
, которое и есть основная цель исследования данной работы.

Рассмотрим вспомогательное утверждение.

Лемма 1. Пусть X =
{

x ∈ R
n | Ax = b

}

непусто. Отображение Pλ
X(x) = x + λA+r(x)

является X-фейеровским при λ ∈ (0, 2).

Д о к а з а т е л ь с т в о. Надо показать справедливость неравенства (см. (2.1))

‖Pλ
X(x)− y‖ < ‖x− y‖ ∀x ∈ R

n\X, ∀ y ∈ X. (3.3)

Зафиксируем два вектора x и y из R
n такие, что x /∈ X, y ∈ X. Тогда

b = Ay, r(x) = A(y − x). (3.4)

Справедлива цепочка равенств Pλ
X(x) = x+λA+(b−Ax) = x+λA+A(y−x) = y+(x− y)+

λA+A(y− x) или Pλ
X(x)− y = (x− y) +λA+A(y−x) = (1− λ)A+A(x− y) + (I −A+A)(x− y) =

(1− λ)P (x− y) +Q(x− y) = (1− λ)p+ q. Здесь I — единичная матрица; P — ортогональный
проектор в линейное подпространство L строк матрицы A; Q — ортогональный проектор в
линейное подпространство L⊥, являющийся ортогональным дополнением подпространства L.
Поэтому для p := P (x−y) и q := Q(x−y) справедливо условие p⊥q, и в силу свойств евклидовой
нормы

‖p‖2 + ‖q‖2 = ‖x− y‖2. (3.5)

Таким образом, имеем

∥

∥Pλ
X(x)− y

∥

∥

2
= (1− λ)2‖p‖2 + ‖q‖2 = ‖x− y‖2 + λ(λ− 2)‖p‖2. (3.6)
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Покажем, что p 6= 0 при x /∈ X, y ∈ X. Предложим противное. Пусть p = P (x − y) = 0.
Тогда, вследствие (3.4) и равенств AP = AA+A = A имеем

Px = Py ⇒ APx = APy ⇒ Ax = Ay = b ⇒ x ∈ X.

Получили противоречие.

Теперь ясно, что в равенстве (3.6) при λ ∈ (0, 2) слагаемое λ(λ − 2)‖p‖2 является отрица-
тельным, а значит, справедливо неравенство (3.3). �

Далее всюду предполагается, что множество X+ = {x ∈ R
n | Ax = b, x > 0} непусто.

Теорема 1. Отображение Cλ
X+

(x) = [x + λA+r(x)]+ принадлежит классу FX+
при всех

λ ∈ (0, 2).

Д о к а з а т е л ь с т в о. Истинность доказываемого утверждения следует из примера 3
и леммы 1. Действительно, отображение Cλ

X+
является суперпозицией X-фейеровского отоб-

ражения Pλ
X и отображения “срезка” на R+, а именно Cλ

X+
(x) = [Pλ

X(x)]+. �

Ниже будет полезен следующий результат.

Лемма 2. Справедливо неравенство

∣

∣|α+ β| − α
∣

∣ 6 |β| ∀ α > 0, β ∈ R.

Д о к а з а т е л ь с т в о. Воспользуемся известными неравенствами

|α+ β| 6 |α|+ |β|, |α+ β| > |α| − |β|.

Из обеих частей неравенств вычтем неотрицательное α, имеем

|α+ β| − α 6 |α|+ |β| − α = |β|, |α+ β| − α > |α| − |β| − α = −|β|.

Что и требовалось доказать. �

Теорема 2. Отображение Aλ
X+

(x) =
∣

∣x + λA+r(x)
∣

∣ принадлежит классу FX+
при всех

λ ∈ (0, 2).

Д о к а з а т е л ь с т в о. Пусть x ∈ R
n
+\X+, y ∈ X+. Повторяя те же рассуждения, что и

при доказательстве леммы 1, получим Aλ
X+

(x) =
∣

∣y+(x−y)+λA+A(y−x)
∣

∣ =
∣

∣y+(1−λ)p+q
∣

∣.
Тогда

∣

∣Aλ
X+

(x)− y
∣

∣ =
∣

∣|y + (1− λ)p+ q| − y
∣

∣.

Применяя к правой части равенства результат леммы 2 и учитывая, что y ∈ R+, имеем

∣

∣Aλ
X+

(x)− y
∣

∣ 6
∣

∣(1− λ)p+ q
∣

∣.

Отметим, что это неравенство выполняется поэлементно.

Продолжая рассуждения, аналогичные доказательству леммы 1, используя равенство (3.6)
и то, что p 6= 0 при x ∈ R

n
+\X+, y ∈ X+, получим

∥

∥Aλ
X+

(x)− y
∥

∥

2
6 ‖x− y‖2 + λ(λ− 2)‖p‖2 < ‖x− y‖2 при λ ∈ (0, 2). (3.7)

Следовательно, отображение Aλ
X+

является X+-фейеровским. �
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4. Алгоритм поиска неотрицательного решения СЛАУ,
основанный на отображении Aλ

X+

Перед тем как привести рабочую схему по поиску некоторого решения системы

Ax = b, x > 0, (4.1)

опишем правило выхода из алгоритма в случае несовместности системы (4.1).
Нам понадобится следующий результат.

Лемма 3. Пусть x̂ = A+b. Для некоторого x ∈ R вычислим d = A+(b−Ax). Если

d 6 0, x̂⊤d > 0, (4.2)

то система (4.1) несовместна.

Д о к а з а т е л ь с т в о. Системе (4.1) сопоставим альтернативную: A⊤z 6 0, b⊤z > 0.
Воспользуемся леммой Фаркаша— Минковского об альтернативах (см. [25; 26, с. 55; 27,

упражнение 2.4.6, с. 135]). Покажем, что при выполнении условий леммы вектор z∗ =
(

A+
)⊤

d
есть решение альтернативной системы. Действительно, в силу (4.2) имеем

A⊤z∗ = A⊤
(

A+
)⊤

d =
(

A+A
)⊤

d = A+Ad = A+AA+(b−Ax) = A+(b−Ax) = d 6 0,

b⊤z∗ = b⊤
(

A+
)⊤

d =
(

A+b
)⊤

d = x̂⊤d > 0.

Что и требовалось показать. �

Следствие 1. Если x̂ = A+b < 0, то система (4.1) несовместна. Действительно, до-

статочно заметить, что при x = 0 имеем d = x̂.

Алгоритм (на основе отображения Aλ
X+

).

Инициализация.

• Требуется единожды вычислить псевдообратную матрицу A+ и вектор x̂ = A+b. Если
x̂ < 0, то система (4.1) несовместна. Вычисления закончены.

• Фиксируем параметр λ ∈ (0, 2).

• В качестве начального приближения x0 берем произвольный вектор из R
n
+.

Общий шаг.

1. Пусть уже имеется k-е приближение xk.

• Вычислим dk = A+(b−Axk). Если dk 6 0 и x̂⊤dk > 0, то система (4.1) несовместна.
Вычисления закончены.

• Вычислим yk = xk + dk. Если yk > 0, то система (4.1) имеет решение x∗ = yk.
Вычисления закончены.

2. Иначе xk+1 =
∣

∣xk + λdk
∣

∣ — очередное приближение.

З а м е ч а н и е 2. По построению все приближения xk лежат в неотрицательном ортанте.

З а м е ч а н и е 3. Вектор yk = xk + dk является проекцией точки xk на множество
решений системы Ax = b, т. е. yk = πX(xk) (см. пример 1).

З а м е ч а н и е 4. Аналогичный алгоритм справедлив и для отображения Cλ
X+

. Един-
ственное отличие— в том, что очередное приближение необходимо вычислять по формуле

xk+1 =
[

xk + λdk
]

+
.
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5. Теоретическое исследование сходимости отображений Aλ
X+

и Cλ
X+

Покажем, что сходимость последовательностей векторов xk, порождаемых отображения-
ми Aλ

X+
и Cλ

X+
, а также сходимость норм соответствующих невязок

∥

∥r(xk)
∥

∥ имеет порядок не
ниже первого, и оценим соответствующие константы асимптотики. Результаты, относящиеся к
сходимости числовых последовательностей

∥

∥r(xk)
∥

∥, будут полезны при анализе вычислитель-
ных экспериментов, поскольку их элементы можно реально вычислить, в отличие от величин
∥

∥ϕ(xk)− y
∥

∥,
∥

∥xk − y
∥

∥, входящих в определение (2.1).
Рассмотрим при λ ∈ (0, 2) отображение Aλ

X+
(см. (3.2)) и порождаемую им последователь-

ность
{

xk
}

, задаваемую рекуррентным соотношением

xk+1 =
∣

∣xk + λA+r(xk)
∣

∣. (5.1)

Далее нам понадобится лемма Хоффмана (см. [13, с. 130; 26, упражнение 4.121, с. 83;
27, § 2.5]). Приведем ее для итерационного процесса (5.1). Пусть S = conv

{

xk
}

. Существует
константа C > 0 такая, что

ρ(x,X+) 6 C
∥

∥b−Ax
∥

∥ для всех x ∈ S, (5.2)

где ρ(x,X+) := inf
y∈X+

∥

∥x− y
∥

∥. Отметим, что константа C зависит только от матрицы A.

Теорема 3. Для последовательности {xk}, порождаемой соотношением (5.1), справед-

лива оценка

ρ(xk+1,X+) 6 Θρ(xk,X+), (5.3)

где

Θ =
(

1 +
λ(λ− 2)

C2‖A‖2
)1/2

, (5.4)

Θ ∈ [0, 1), C — константа из неравенства (5.2).

Д о к а з а т е л ь с т в о. Так как отображение Aλ
X+

является X+-фейеровским, то в силу

свойства 1 имеем xk −−−→
k→∞

y ∈ X+. Из равенств (3.4) следует, что r(xk) = b−Axk = A(y−xk) =

AA+A(y − xk) = AP (y − xk) = Apk. Отcюда
∥

∥pk
∥

∥ >
‖r(xk)‖
‖A‖ .

В то же время из условия (5.2) следует, что

∥

∥r(xk)
∥

∥ >
ρ(xk,X+)

C
.

Таким образом, из последних двух неравенств, получим оценку (при любом y ∈ X+)

∥

∥pk
∥

∥ >
ρ(xk,X+)

C‖A‖ . (5.5)

Теперь перейдем к выкладкам по установлению оценки (5.3). Выберем y из X+ так, чтобы
∥

∥xk − y
∥

∥ = inf
y∈X+

∥

∥xk − y
∥

∥ = ρ(xk,X+). В силу (3.7), (5.5) и λ ∈ (0, 2) имеем

ρ(xk+1,X+)
2 6

∥

∥xk+1 − y
∥

∥

2
(3.7)

6
∥

∥xk − y
∥

∥

2
+ λ(λ− 2)

∥

∥pk
∥

∥

2

(5.5)

6
∥

∥xk − y
∥

∥

2
+ λ(λ− 2)

ρ(xk,X+)
2

C2‖A‖2 = ρ(xk,X+)
2 + λ(λ− 2)

ρ(xk,X+)
2

C2‖A‖2

=
(

1 +
λ(λ− 2)

C2‖A‖2
)

ρ(xk,X+)
2 = Θ2ρ(xk,X+)

2.
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Осталось отметить, что C‖A‖ > 1, и поэтому в силу (5.4) величина Θ принадле-
жит интервалу [0, 1). Действительно, подставив в левую часть неравенства (5.5) выражение
∥

∥xk − y
∥

∥ >
∥

∥pk
∥

∥ (см. (3.5)), а в правую — ρ(xk,X+) =
∥

∥xk − y
∥

∥, получим

∥

∥xk − y
∥

∥ >
∥

∥pk
∥

∥ >
ρ(xk,X+)

C‖A‖ =

∥

∥xk − y
∥

∥

C‖A‖ . (5.6)

Таким образом, отображение Aλ
X+

порождает сходящуюся последовательность векторов, а
порядок ее сходимости — не ниже первого. �

Теорема 4. Пусть последовательность
{

xk
}

порождается соотношением (5.1). Тогда

последовательность
∥

∥r(xk)
∥

∥ −−−→
k→∞

0 и при этом справедлива оценка

∥

∥r(xk+1)
∥

∥ 6 Θr

∥

∥r(xk)
∥

∥. (5.7)

Здесь константа Θr =
√

C2‖A‖2 + λ(λ− 2), C — константа из неравенства (5.2).

Д о к а з а т е л ь с т в о проводится аналогично доказательству теоремы 3 применитель-

но к неравенству ‖r(x)‖ (3.4)
= ‖A(y − x)‖ 6 ‖A‖ · ‖(y − x)‖. �

З а м е ч а н и е 5. Несложно убедиться, что константы Θ (см. (5.4)) и Θr связаны соот-
ношением

Θr = C‖A‖Θ.

Так как C‖A‖ > 1 (см. (5.6)), а Θ ∈ [0, 1), то величина Θr — теперь необязательно из
интервала [0, 1). Ясно, что константа Θr будет меньше 1 при конкретном λ ∈ (0, 2), если
только

C‖A‖ <
√

2− (1− λ)2 6
√
2.

З а м е ч а н и е 6. Полученная для константы Θ оценка (5.4) имеет вид, очень близкий
к виду оценок соответствующих констант, полученных ранее при исследовании сходимости
фейеровских процессов (см., например, [12–14]).

Аналогичные теоремам 3 и 4 утверждения справедливы и для отображения

Cλ
X+

(x) =
[

x+ λA+r(x)
]

+
.

Теорема 5. Для последовательности
{

xk
}

, порождаемой соотношением

xk+1 =
[

xk + λA+r(xk)
]

+
, (5.8)

выполняется оценка (5.3) с такой же константой Θ (заданной формулой (5.4)).

Теорема 6. Пусть последовательность
{

xk
}

порождается соотношением (5.8). Тогда

последовательность
∥

∥r(xk)
∥

∥ −−−→
k→∞

0, и при этом справедлива оценка (5.7).

6. Экспериментальное исследование сходимости отображений Aλ
X+

и Cλ
X+

Было проделано большое количество разнообразных экспериментов с совместными и несов-
местными системами вида (4.1), однако ниже будут приведены результаты решения только
совместных систем.
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6.1. Генерация тестовых задач

Для генерации совместной системы

Ax = b, x > 0,

осуществлены следующие шаги:

1. С помощью генератора псевдослучайных чисел определены матрица A размерности m×n
и вектор x∗ ∈ R

n
+.

2. Вычислен вектор b = Ax∗.

6.2. Результаты расчетов

В табл. 1–6 приведены результаты расчетов для задач с количеством неизвестных n ∈
{100, 500, 750} и уравнений m = γn, γ ∈ {0.1, 0.25, 0.5, 0.75, 0.9, 0.95}. В них представлено ме-
дианное значение шагов итерационных процессов, порождаемых отображениями Aλ

X+
и Cλ

X+
,

при решении 1000 сгенерированных примеров при фиксированных n и m. Далее соответству-
ющие итерационные процессы для краткости будем называть итерационный процесс Aλ

X+
и

итерационный процесс Cλ
X+

. В первоначальных экспериментах в соответствии с замечанием 1
подразд. 3.2 на ранг матрицы A не было наложено никаких ограничений, кроме условия A 6= 0.
Расчеты подтвердили работоспособность исследуемых алгоритмов и справедливость установ-
ленных теоретических утверждений. Были также рассмотрены СЛАУ, которые не имели неот-
рицательного решения. С их помощью была экспериментально проверена справедливость лем-
мы 3. В последующих экспериментах, результаты которых представлены ниже, матрицы всех
исследуемых систем имели полный строчный ранг, СЛАУ были совместны и имели неотрица-
тельное решение. В качестве начального приближения бралась точка x0 = 0.

Расчеты прекращались при выполнении одного из правил останова:

1) xk > 0; 2) ‖r(xk)‖ < ε; 3) исчерпан лимит по итерациям (MaxIter).

Т а б л и ц а 1
Медианное значение количества шагов

для итерационных процессов Aλ
X+

и Cλ
X+

при λ = 1
❍
❍
❍
❍
❍❍

n
γ

0.1 0.25 0.5 0.75 0.9 0.95

4 5 24 71 183 310
26 36 64 144 357 596

5 6 30 94 288 580
31 43 78 192 562 1112

5 6 32 99 310 673
32 45 82 202 605 1300

100

500

750

Т а б л и ц а 2
Отношение медианного значения количества

шагов для итерационного процесса Cλ
X+

к Aλ
X+

при λ = 1

❍
❍
❍
❍
❍❍

n
γ

0.1 0.25 0.5 0.75 0.9 0.95

100 6.5 7.2 2.7 2.03 1.95 1.92
500 6.2 7.2 2.6 2.04 1.95 1.92
750 6.4 7.5 2.6 2.04 1.95 1.93
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Т а б л и ц а 3
Медианное значение количества шагов

для итерационных процессов Aλ
X+

и Cλ
X+

при оптимальном λ
❍
❍
❍
❍
❍❍

n
γ

0.1 0.25 0.5 0.75 0.9 0.95

3 3 4 4 6 6
5 12 24 59 220 271

4 4 4 6 11 12

6 18 26 101 356 569

4 4 5 6 11 14
6 19 33 111 375 725

100

500

750

Т а б л и ц а 4
Отношение медианного значения количества шагов
для итерационного процесса Cλ

X+
к количеству шагов

итерационного процесса Aλ
X+

при оптимальном λ
❍
❍
❍
❍
❍❍

n
γ

0.1 0.25 0.5 0.75 0.9 0.95

100 1.7 4 6 15 32 45
500 1.5 4.5 6 16 34 47

750 1.5 4.8 7 19 36 52

Т а б л и ц а 5
Оптимальное значение параметра релаксации

для итерационных процессов Aλ
X+

и Cλ
X+

❍
❍
❍
❍
❍❍

n
γ

0.1 0.25 0.5 0.75 0.9 0.95

1.1 1.17 1.25 1.55 1.725 1.8
1.775 1.85 1.95 1.775 1.9 1.925

1.075 1.18 1.275 1.575 1.75 1.8
1.725 1.85 1.975 1.8 1.925 1.95

1.075 1.15 1.25 1.575 1.75 1.8

1.725 1.85 1.975 1.8 1.925 1.95

100

500

750

Значения соответствующих параметров были приняты следующими: MaxIter = 3000 — верх-
няя граница по количеству итераций, ε = 10−11.

Эксперименты проводились в среде MATLABr, версия R2022b. Характеристики компью-
тера: процессор Intelr Core™ i5-10400F CPU (2.90GHz, 6 ядер, 12 потоков), оперативная па-
мять — 16 ГБ. Операционная система — Майкрософтr Windowsr 10, версия 21H2.

В таблицах серым цветом выделены результаты расчетов для итерационного процес-
са Aλ

X+
.

В табл. 1 и 2 приведены результаты расчетов при λ = 1. Из них следует, что последо-
вательность приближений, построенная с помощью отображения Aλ

X+
сходится значительно

быстрее, чем для отображения Cλ
X+

.

В табл. 3–5 приведены результаты, полученные при “оптимальном” значении параметра λ.
Здесь под “оптимальным” понимается такое значение, при котором итерационный процесс
сходился за наименьшее число шагов. Поиск оптимального значения производился перебором
значений параметра λ от 0 до 2 с шагом в 0.005.

В табл. 6 представлены результаты численного эксперимента по исследованию количества
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Т а б л и ц а 6
Количество шагов и процент итерационных процессов Aλ

X+

и Cλ
X+

, завершенных по условию xk > 0

0.1 0.25 0.5 0.75 0.9 0.95

184 (3) 190 (0) 724 (0) 1641 (0) 2989 (0) 3000 (0)
184 (3) 189 (0) 752 (0) 1713 (0) 3000 (0) 3000 (0)

88 (2) 90 (0) 363 (0) 828 (0) 1475 (0) 2200 (0)
88 (2) 90 (0) 393 (0) 906 (0) 1620 (0) 2401 (0)

55 (3) 57 (0) 229 (0) 532 (0) 913 (0) 1434 (0)

55 (3) 57 (0) 258 (0) 612 (0) 1053 (0) 1658 (0)

39 (4) 40 (0) 154 (0) 365 (0) 644 (0) 934 (0)
39 (4) 41 (0) 186 (0) 445 (0) 775 (0) 1139 (0)

29 (2) 30 (0) 117 (0) 283 (0) 475 (0) 730 (0)
29 (2) 34 (0) 150 (0) 365 (0) 616 (0) 931(0)
2 (97) 23 (5) 97 (0) 207 (0) 378 (0) 570 (0)

22 (2) 27 (0) 131 (0) 286 (0) 518 (0) 789 (0)

2 (100) 13 (56) 72 (0) 189 (0) 297 (0) 464 (0)
17 (0) 21 (0) 105 (0) 280 (0) 442 (0) 674 (0)

2 (100) 4 (56) 60 (0) 138 (0) 232 (0) 372 (0)
13 (3) 18 (0) 100 (0) 219 (0) 372 (0) 610 (0)

2 (100) 3 (99) 38 (0) 113 (0) 198 (0) 311 (0)
10 (2) 14 (0) 76 (0) 205 (0) 344 (0) 541 (0)

2 (100) 3 (100) 29 (5) 88 (0) 147 (0) 254 (0)
8 (2) 12 (0) 74 (0) 180 (0) 290 (0) 493 (0)

2 (100) 3 (100) 7 (80) 64 (0) 124 (0) 188 (0)

8 (90) 10 (0) 65 (0) 157 (0) 276 (0) 416 (0)

2 (100) 3 (100) 5 (99) 39 (28) 87 (0) 151 (0)
2 (100) 12 (62) 61 (0) 141 (0) 245 (0) 399 (0)

2 (100) 3 (100) 4 (100) 6 (94) 32 (49) 84 (25)
2 (100) 3 (92) 51 (0) 135 (0) 221 (0) 350 (0)

2 (100) 3 (100) 5 (100) 6 (100) 5 (95) 4 (80)
2 (100) 3 (100) 51 (0) 122 (0) 205 (0) 350 (0)

2 (100) 3 (100) 5 (100) 5 (100) 4 (100) 3 (100)

2 (100) 3 (100) 43 (6) 113 (0) 202 (0) 318 (0)

2 (100) 3 (100) 4 (100) 5 (100) 4 (100) 3 (100)
2 (100) 3 (100) 41 (23) 107 (0) 179 (0) 295 (0)

2 (100) 3 (100) 5 (100) 4 (100) 3 (100) 3 (100)
2 (100) 3 (100) 45 (73) 91 (0) 180 (0) 277 (0)

2 (100) 3 (100) 5 (100) 4 (100) 3 (100) 3 (100)
2 (100) 3 (100) 38 (99) 92 (7) 171 (0) 280 (0)

2 (100) 3 (100) 5 (100) 4 (100) 4 (100) 3 (100)
2 (100) 3 (100) 35 (100) 127 (89) 185 (4) 258 (0)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

λ
γ

шагов итерационных процессов Aλ
X+

и Cλ
X+

и условий их завершения в зависимости от значения
параметров λ и γ при n = 100. Первое число в ячейке — количество шагов, а число в скобках —
количество процессов, завершенных по условию xk > 0, выраженное в процентах.

Полученные данные свидетельствуют о существовании связи количества шагов и условий
завершения. Наименьшее количество шагов обоих итерационных процессов наблюдается при
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остановке вычислений по условию xk > 0, что очень похоже на получение решения за конечное
число шагов в фейеровских процессах решения систем линейных неравенств с зеркальной
релаксацией (см., например, теорему 2.2 в монографии [13, с. 115]).

Зависимость исследуемых параметров от λ носит сложный характер, но можно отметить,
что меньшее число шагов наблюдается вблизи оптимальных значений параметра релаксации.

Для обоих итерационных процессов Cλ
X+

и Aλ
X+

количество шагов увеличивается с ростом

значения параметра γ, но для процесса Aλ
X+

это происходит только при значениях параметра
релаксации, меньших оптимального.

Область значений параметров λ и γ, связанных с условием завершения xk > 0 для процес-
са Aλ

X+
, шире соответствующей области для процесса Cλ

X+
. В целом представленные результа-

ты свидетельствуют о преимуществе итерационного процесса Aλ
X+

над Cλ
X+

.

Заключение

• Введены новые фейеровские отображения Aλ
X+

и Cλ
X+

.

• Доказана линейная скорость сходимости последовательностей
{

xk
}

и
∥

∥r(xk)
∥

∥, порож-
денных фейеровскими отображениями Aλ

X+
и Cλ

X+
. Найдены соответствующие оценки

констант асимптотики для
{

xk
}

и
∥

∥r(xk)
∥

∥.

• Экспериментально установлено, что количество шагов в итерационных процессах, по-
рождаемых фейеровскими отображениями Aλ

X+
и Cλ

X+
, зависит от значения параметра

релаксации λ, а оптимальные значения указанного параметра для обоих процессов ле-
жат в интервале (1, 2).

• Количество итераций обоих итерационных процессов в большей степени зависит от числа
линейно независимых строк матрицы A, чем от количества неизвестных.

• Количество шагов итерационного процесса, построенного на отображении Aλ
X+

, суще-
ственно меньше, чем количество шагов итерационного процесса, построенного на отоб-
ражении Cλ

X+
, при всех значениях параметра λ, включая “оптимальные” для каждого из

процессов значения.

• Наименьшее количество шагов обоих итерационных процессов наблюдается при останов-
ке вычислений по условию xk > 0, что очень похоже на получение решения за конечное
число шагов в фейеровских процессах решения систем линейных неравенств с зеркаль-
ной релаксацией.
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