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Представлен новый алгоритм решения системы линейных неравенств, использующий уско-
ренный фейеровский процесс поиска неотрицательного решения системы линейных алгеб-
раических уравнений. В данной статье — первой части — приведено теоретическое обос-
нование алгоритма и результаты предварительного (иллюстративного) вычислительного
эксперимента на системе неравенств средней размерности с реальными промышленными
данными. Результаты эксперимента демонстрируют работоспособность предлагаемого ал-
горитма и более высокую скорость сходимости (оцениваемую по затрачиваемому времени
и по числу выполненных итераций) по сравнению с тремя основными вариантами «клас-
сических» фейеровских алгоритмов решения систем линейных неравенств, основанных
на стратегиях взвешенного, последовательного и экстремального объединения фейеров-
ских отображений проектирования на полупространства, соответствующие индивидуаль-
ным неравенствам исследуемой системы неравенств. Более детальное экспериментальное
исследование предлагаемого алгоритма будет выполнено во второй части статьи.
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Введение. Поиск эффективных алгоритмов решения систем линейных неравенств по
прежнему актуален (см., например [1]). Особое место при решении систем линейных нера-
венств занимают итерационные алгоритмы, построенные на фейеровских отображениях (фей-
еровские алгоритмы). Отображения указанного класса являются обобщением сжимающих
отображений, в которых понятие неподвижной точки расширяется до множества непо-
движных точек, а понятие сходимости к точке эволюционирует до сходимости к множе-
ству.

Фейеровские алгоритмы обладают рядом положительных особенностей, среди которых:
— простой интерационный шаг, не требующий одномерного поиска, обращения матриц или

решения вспомогательных оптимизационных задач;
— возможность декомпозиции и организации параллельных вычислений при решении за-

дач большой размерности;
— глобальная линейная сходимость;
— устойчивость к ошибкам округления, самоисправляемость;
— возможность обработки динамических (изменяющихся во времени) данных;
— возможность адаптации к решению широкого круга задач, в том числе поиска псевдо-

решений несовместных систем линейных уравнений, неравенств и несобственных задач мате-
матического программирования.

К сожалению, в дополнение к представленной характеристике, необходимо отметить мед-
ленную сходимость фейеровских алгоритмов. Акцент на эту особенность в публикациях обыч-
но не делается. Но ее можно проследить по опубликованным экспериментальным значениям
времени счета и количества итераций (см., например [2–8]). Таким образом, проблема уско-
рения сходимости является актуальной для данного класса алгоритмов.

Определенные положительные результаты по ускорению сходимости были получены в
работе [9] в виде нового фейеровского алгоритма поиска неотрицательного решения системы

∗Результаты исследований, представленные в п. 4, получены за счет гранта Российского научного фонда
№ 23-41-00060, https://rscf.ru/project/23-41-00060/, в Институте проблем машиноведения Российской академии
наук.
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линейных алгебраических уравнений (СЛАУ). Алгоритм был теоретически обоснован и на мо-
дельных и реальных примерах продемонстрировал более быструю сходимость по сравнению
со своим прототипом – фейеровским алгоритмом, основанным на операциях положительной
срезки и ортогонального проектирования на множество решений СЛАУ.

В настоящей работе мы выполним адаптацию указанного алгоритма к решению системы
линейных неравенств. Основой данной адаптации будет служить сведение задачи решения
системы неравенств к задаче поиска неотрицательного решения СЛАУ специального вида.

1. Постановка задачи. Пусть дана система линейных неравенств

Ax ¤ b, (1)

где A P Rm�n, x P Rn, b P Rm, 0   rankA ¤ n   m.
Целью исследования является построение алгоритма решения системы (1), относящегося

к классу фейеровских алгоритмов и обладающий в данном классе более высокой скоростью
сходимости.

2. Общие сведения. (см. [10–12]) Пусть D � Rn, φ : D ÝÑ D — некоторое отображение.
Обозначим через M множество неподвижных точек отображения φ, т. е.

M �
 
x P D | φpxq � x

(
.

О п р е д е л е н и е 1. Отображение φ называется M -фейеровским, если множество M
непусто и выполняется строгое неравенство

}φpxq � y}   }x� y} @x P DzM, @ y P M. (2)

В неравенстве (2) и далее во всем тексте статьи будем считать, что символом || � || обозна-
чена евклидова векторная норма. Класс M -фейеровских отображений обозначим через FM .

Рассмотрим последовательность
 
xk

(
, которая строится по правилу

� x0 P DzM ;
� xk�1 � φpxkq, k � 1, 2, . . .

(3)

Правило (3) является принципиальной схемой M -фейеровского алгоритма (и соответству-
ющего итерационного фейеровского процесса), построенного с помощью отображения φpxq.

Напомним несколько свойств M -фейеровских отображений (и соответствующих итера-
ционных процессов). Пусть последовательность txku построена по правилу (3) с помощью
отображения φ P FM .

Свойство 1. Если txku XM � ∅, то xk ÝÝÝÑ
kÑ8

y P M . Иначе найдется такое K P N, что

xk P M при всех k ¥ K.
Свойство 2. Отображение вида λφpxq � p1� λqx является M -фейеровским при λ P p0, 1q.
Свойство 3. Пусть φi соответствующие Mi-фейеровские отображения, i � 1 : m, множе-

ство M �
�

i�1:m

Mj непусто. Отображения вида

φpxq �
¸

i�1:m

λiφipxq при λi ¡ 0,
¸

i�1:m

λi � 1,

φpxq � φ1pφ2p. . . φmpxq . . .qq,

являются M -фейеровскими.
3. Базовые конструкции фейеровских отображений для решения систем ли-

нейных неравенств. Представим систему (1) в виде совокупности отдельных неравенств.
Обозначим i-ю строку матрицы A через ai, i � 1 : m. Тогда система неравенств (1) примет
вид

aix ¤ bi, i � 1 : m.

Каждое неравенство в этой системе определяет полупространство Li :�
!
x P Rn | aix ¤ bi

)
.

Следуя логике работ (см. [10,11]), введем отображения

φipxq � x� λi

raix� bis�

||ai||
2 � aJi , λi P p0, 2q, (4)

где символом r � s� обозначена операция положительной срезки, i � 1 : m. Отображение (4)
является Li-фейеровским и, вместе с отображением экстремального проектирования (о нем
будет сказано ниже) и отображениями, соответствующими Свойствам 2 и 3, составляет основу
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базовых конструкций фейеровских отображений для решения систем линейных неравенств.
Традиционно в качестве данных конструкций называют отображения взвешенного, последо-
вательного и экстремального проектирования:

φp1qpxq �
m̧

i�1

αiφjpxq, αi ¡ 0,
m̧

i�1

αi � 1, (5)

φp2qpxq � φ1

�
φ2

�
. . . φmpxq . . .

�	
, (6)

φp3qpxq � φi�pxq, (7)

где индекс i� P 1 : m, такой что
�
ai�x� bi�

�
�
� max

iP1:m
raix� bis�.

4. Сведение задачи поиска решения системы линейных неравенств к задаче
поиска решения системы линейных алгебраических уравнений с условием неот-
рицательности.

Исходная система неравенств (1) может быть сведена к системе равенств за счет введения
дополнительной переменной u P Rm

� , где Rm
� — неотрицательный ортант m-мерного веще-

ственного пространства:
Ax � b� u, u ¥ 0. (8)

Мы не будем останавливаться на системе (8), а, проделав некоторые выкладки, придем к
эквивалентной (8), но менее распространенной форме СЛАУ с условием неотрицательности,
впервые, по-видимому, представленной в работах [13,14].

Пусть система (8) совместна. Запишем ее нормальное (относительно x) решение

x � A�pb� uq, (9)

где A� P Rn�m — псевдообратная матрица. Объединяя (8) и (9), получим

AA�pb� uq � b� u, u ¥ 0. (10)

Утверждение 1. Поиск произвольного решения системы неравенств (1) эквивалентен ре-
шению задачи (10), в том смысле, что если вектор u� P Rm

� — некоторое решение систе-
мы (10), то вектор

x� � A�pb� u�q (11)

— решение системы (1).

Доказательство. Пусть u� P Rm
� — решение системы (10). Умножим на матрицу A обе части

равенства (11) слева. Учитывая (10) и неотрицательность вектора u�, получим

Ax� � AA�pb� u�q � b� u� ¤ b.

Следовательно, вектор x� — решение исходной системы неравенств (1). ■

Перепишем систему (10) в виде СЛАУ с неизвестным неотрицательным вектором u:

Pu � h, u ¥ 0, (12)

где
P � Im �AA� (13)

— проектор в линейное подпространство, являющееся ортогональным дополнением линейного
подпространства столбцов матрицы A, Im — единичная матрица порядка m,

h � Pb. (14)

Таким образом, исходная задача (1) сведена к задаче (12), для которой в работе [9] был
разработан новый вариант фейеровского отображения. Далее, учитывая специфику свойств
матрицы P и вектора правых частей h системы (12), будет осуществлен перенос основных
результатов работы [9].

В последующих выкладках будут использованы тождества

PA � 0, A�P � 0, (15)

PJ � P, P� � P, (16)
P � P � P, (17)
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в справедливости которых можно убедиться с помощью уравнений Мура – Пенроуза (см. [16,
c. 38], [17, § 2.6.1, § 5.5.4]), а также условия совместности систем, альтернативных (1) и (12)
(см., например, [15,18,19]).

В соответствии с теоремой Александрова – Фань-Цзи, система, альтернативная (1), имеет
вид

qJA � 0, qJb ¡ 0, q ¤ 0. (18)

В соответствии с леммой Минковского – Фаркаша, система, альтернативная (12), имеет вид

zJP ¤ 0, zJh ¡ 0. (19)

Лемма 1. Если z P Rm — решение системы (19), то

q � Pz (20)

— решение системы (18). Справедливо и обратное утверждение, а именно, если q решение
системы (18), то z � Pq — решение системы (19).

Доказательство. Пусть z решение системы (19). Покажем, что q � Pz — решение систе-
мы (18). Действительно,

qJA � zJPA
(15)
� 0,

qJb � zJPb
(14)
� zJh

(19)
¡ 0,

q � Pz �
�
zJP

�J (19)
¤ 0.

Аналогично доказывается и обратное утверждение. ■

Положим
ru � h� Pu. (21)

Лемма 2. Если ru ¤ 0 и hJru ¡ 0, то система (12) несовместна.

Доказательство. Для системы (12) сопоставим альтернативную вида PJz ¤ 0, hJz ¡ 0
(см. (19)). Воспользуемся леммой Минковского – Фаркаша. Покажем, что при выполнении
условий леммы, вектор z� � ru является решением альтернативной системы. Действительно,
в силу (14), (16) и (17), имеем

PJz� � Pru � P
�
h� Pu

�
� h� Pu � ru ¤ 0,

hJz� � hJru ¡ 0.

Что и требовалось показать. ■

Следствие 1. Если h ¤ 0 и h � 0, то система (12) несовместна.

Замечание 1. Очевидно, что если h � 0, то u � 0 — решение системы (12).

Объединяя утверждения лемм 1 и 2 заключаем, что справедливо

Утверждение 2. Системы (1) и (12) разрешимы или неразрешимы одновременно, а их
решения и решения соответствующих альтернативных систем связаны соотношениями
соответственно (11) и (20).

5. Фейеровское отображение, связанное с задачей поиска неотрицательного ре-
шения СЛАУ специального вида. В работе [9] был предложен алгоритм фейеровского
типа для нахождения решения системы

Ax � b, x ¥ 0 (22)

(с числом уравнений не больше числа неизвестных). Указанный алгоритм был основан на
X�-фейеровском отображении вида

Aλ
X�pxq :�

��x� λA�rx
�� : Rn

� Ñ Rn
�, (23)

где X� :�
 
x P Rn | Ax � b, x ¥ 0

(
, rx :� b � Ax, λ P p0, 2q – параметр релаксации, | � | –

поэлементная операция взятия абсолютной величины.
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Перенесем предложенные в работе [9] идеи на систему (12). Введем множество

U� :�
 
u P Rm | Pu � h, u ¥ 0

(

и отображение
Aλ

U�puq :�
��u� λru

�� : Rm
� Ñ Rm

� . (24)

Отображение Aλ
U�
puq является специальным случаем отображения Aλ

X�
pxq. Чтобы убе-

диться в этом, сопоставим системы (12) и (22), формулы (23) и (24). Для применения отоб-
ражения Aλ

X�
pxq к системе (12) заменяем x на u, rx на ru и A� на P�. В результате получим

Aλ
U�puq �

��u� λP�ru
�� : Rm

� Ñ Rm
� . (25)

Подстановка в формулу (25) тождеств (16) и (17) завершает выкладки, превращая (25) в
формулу (24).

Поскольку отображение Aλ
U�
puq является специальным случаем отображения Aλ

X�
pxq,

справедливо

Утверждение 3 ( [9]). Отображение Aλ
U�
puq принадлежит к классу FU� при всех λ P p0, 2q.

С учетом утверждений 2 и 3 отображение Aλ
U�
puq может быть использовано для констру-

ирования алгоритма, осуществляющего поиск решения системы неравенств (1). Рассмотрим
последовательность tuku, построенная по правилу

� u0 P Rm
� zU�;

� uk�1 � Aλ
U�
pukq, k � 1, 2, . . .

(26)

Пусть ρpu, U�q :� inf
vPU�

}u� v}. В силу Леммы Хоффмана (см. [11, с. 130], [18, упр. 4.121,

с. 83], [19, § 2.5]) справедливо условие

ρpu, U�q ¤ C}P }}ru} для всех u P convtuku,

где константа C (константа Хоффмана) зависит только от матрицы P .
Следующая теорема («перенесенная» с отображения Aλ

X�
pxq на отображение Aλ

U�
puq)

утверждает, что соответствующий итерационный процесс имеет линейную скорость сходи-
мости.

Теорема 1 ( [9]). Пусть последовательность tuku соответствует правилу (26). Тогда спра-
ведливо неравенство

ρpuk�1, U�q ¤ Θρpuk, U�q, (27)

где

0 ¤ Θ �
�
1�

λpλ� 2q

C2γ2

	1{2

  1, (28)

γ � }P }. (29)

Замечание 2. В формулах работы [9], соответствующих формулам (28) и (29), фигуриру-
ет евклидова матричная норма. Однако оценки, получаемые с помощью неравенства (27),
можно сделать более точными, вычисляя для Θ спектральную норму. Обозначим указан-
ную норму символом ||| � |||. При 0   rankA ¤ n   m справедливо условие γ � |||P ||| � 1,
поскольку матрица P является проектором, P � 0 и собственные значения P принимают
только два значения 0 и 1 pсм., например [16, c. 36]q.

6. Построение алгоритма решения системы линейных неравенств. В этом пара-
графе мы займемся конструктивным построением итерационного вычислительного алгорит-
ма решения системы (1). «Классическая» схема подобного алгоритма, как известно, должна
содержать: 1) этап инициализации (задание исходных данных, вычисление скалярных, век-
торных и матричных объектов, используемых алгоритмом, но остающихся в ходе его работы
неизменными), 2) Общий шаг, содержащий повторяющиеся вычисления объектов необходи-
мой размерности, используемых алгоритмом и изменяющихся в ходе его работы. Оба этапа
обязаны содержать процедуры проверки условий остановки вычислений (прекращения ра-
боты алгоритма): (а) решение задачи (с заданной точностью) найдено; (b) задача не имеет
решения; (с) превышено допустимое количество шагов алгоритма (допустимое время).
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Заметим также, что вид используемых алгоритмом векторно-матричных формул, как и
сам набор используемых «рабочих» векторов и матриц, вычисляемых алгоритмом и храни-
мых в оперативной памяти компьютера, как правило, может быть оптимизирован, и, следо-
вательно, может (и будет) отличаться от используемых при теоретическом (принципиально-
му) описании и обосновании алгоритма. Указанное замечание в полной мере применимо к
рассматриваемому в данной работе алгоритму, принципиальное описание элементов которо-
го (в виде формулы (14) для вектора h и формулы (21) для вектора ru) содержит матри-
цу P P Rm�m. Анализ соотношения (13), определяющего матрицу P , показывает, что явно
вычислять и хранить в оперативной памяти указанную матрицу нецелесообразно, а использу-
емый в (24) вектор ru, заданный формулой (21), а также вектор h, заданный формулой (14),
следует вычислять, используя матрицы A, A�, имеющие меньшие размерности (m � n и,
соответственно, n�m).

Рассмотрим данный вопрос более подробно. Положим

x̂ � A�b. (30)

Тогда, в силу (13), (14) и (30), получим

h � b�Ax̂, (31)

A�h � A�Pb � 0. (32)

Заметим, что в терминах векторов x̂ и h удобно сформулировать условие совместности
системы (1), дополняющее условие несовместности, декларируемое следствием 1.

Утверждение 4. Если h � 0, то система (1) совместна, а вектор x̂ является ее решением,
при котором все неравенства системы (1) выполняются в форме равенств.

Продолжим выкладки, направленные на создание требуемых векторов и вывод матрично-
векторных соотношений, с использованием которых будет построен «оптимизированный» ал-
горитм решения системы (1). В отличие от формул (30), (31), описывающих неизменные в
процессе работы алгоритма векторные объекты (очевидно соответствующие этапу инициали-
зации), представим теперь формулы для объектов «общего шага».

Пусть на шаге с номером k ¥ 1 известен неотрицательный вектор uk P Rm. Введем в
рассмотрение векторы

gk � A�uk, (33)

sk � h�Agk, (34)

rk � sk � uk. (35)

Сравним векторы ru и rk (см., формулы (21) и (35)). В силу (33)–(35) и (13) имеем

rk
(35)
� sk � uk (34)

� h�Agk � uk (33)
� h�AA�uk � uk (13)

� h� Puk. (36)

Таким образом, формулы (21) и (35) эквивалентны в том смысле, что ru � rk при u � uk.
Данный факт позволяет использовать лемму 2 для записи критерия остановки алгоритма по
условию обнаружения несовместности системы (1): если выполнены условия

rk ¤ 0, hJrk ¡ 0, (37)

то система (1) несовместна.
Положим

x � x̂� gk. (38)

Покажем теперь, что векторы sk и x, позволяют сформулировать критерий остановки
алгоритма по достижению решения системы (1) и предъявить указанное решение. Пусть
выполняется условие

sk ¥ 0. (39)

Тогда вектор sk является решением системы (12). Действительно, используя выражения (34),
(15), (31) и (14), получим

Psk
(34)
� P ph�Agkq

(15)
� Ph

(31)
� P pb�Ax̂q

(15)
� Pb

(14)
� h.
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Но тогда, в силу утверждения 1 и формул (11), (30)–(34) и уравнений Мура – Пенроуза
решение системы (1) имеет вид

x�
(11)
� A�pb� skq

(30),(34)
� x̂�A�ph�AA�ukq

(32)
� x̂�A�uk (33)

� x̂� gk,

что соответствует формуле (38).
Заметим, что вектор sk может быть использован для пошагового контроля процесса ре-

шения системы (1). Предположим (в действительности мы этого делать не будем), что k-м на
шаге алгоритма по формуле (38) вычисляется вектор xk, который будем считать приближе-
нием к решению x� системы (1). Невязка системы (1), соответствующая вектору xk, в силу
(12), (13), (14), (33) и (34) имеет вид

rAxk � bs� � rAA�pb� skq � bs� � r�sks�.

Объединяя представленные выше результаты (в частности, утверждение 4), получаем сле-
дующий алгоритм.

Алгоритм решения системы неравенств (1)

И н и ц и а л и з а ц и я. Вычислить матрицу A�, вектор x̂ по формуле (30) и вектор h по
формуле (31).

(a) Если h � 0, то x� � x̂ — решение системы (1), работу алгоритма закончить.

(b) Если h � 0 и h ¤ 0, то система (1) несовместна, работу алгоритма закончить.

Задать вектор u0 P Rm
� и параметр релаксации 0   λ   2.

О б щ и й ш а г . Пусть уже имеется k-е приближение uk, k � 1, 2, . . .

(c) Вычислить вектор gk по формуле (33) и вектор sk по формуле (34). Если выполнено
условие (39), то x� � x̂� gk — решение системы (1), работу алгоритма закончить.

(b) Вычислить вектор rk по формуле (35). Если выполнены условия (37), то система (1)
несовместна, работу алгоритма закончить.

(c) Положить uk�1 �
��uk � λrk

��.
Замечание 3. Отметим, что окончание вычислений в приведенном алгоритме связано
либо с нахождением решения системы (1), либо с нахождением решения альтернативной
системы (18). Действительно, в силу (14), (16) и (17), условие h � 0 можно переписать в
виде

0   hJh �
�
Pb

�J�
Pb

�
� bJPb � hJb.

В то же время, hJA � 0 pсм. (32)q. Таким образом, выполнение на шаге инициализации
условий h ¤ 0, h � 0 означает, что вектор h — решение системы (18), альтернативной
системе (1).

Аналогичная ситуация и на общем шаге алгоритма. Напомним, что rk � rpukq pсм. (36)q.
Пусть rk ¤ 0 и hJrk ¡ 0. В силу Леммы 1 при z � rk � P pb � ukq получим, что век-
тор q � Prk � P pb � ukq � rk является решением системы (18), альтернативной систе-
ме (1).

7. Вычислительный эксперимент. Вычислительный эксперимент, в ходе которого с
помощью алгоритмов, основанных на отображениях (5)–(7), а также нового алгоритма, осно-
ванного на отображении (24), осуществлялся поиск решения системы неравенств (1), носил
предварительный (иллюстративный характер).

Целью эксперимента было убедиться в работоспособности нового алгоритма и получить
данные для сравнения показателей скорости сходимости рассматриваемых алгоритмов: вре-
мени (T ), затрачиваемого алгоритмами, а также вида «пошаговой сходимости» алгоритмов
— экспериментальных зависимостей величин δpxkq от номера шага k, где

δpxq :� max
iP1:m

raix� bis�

— ℓ8-норма невязки системы (1), достигающаяся на векторе x. Для алгоритма, основанного на
отображении (6) (стратегия последовательного проектирования) «шагом» считаем выполне-
ние последовательности проекций на все полупространства исследуемой системы неравенств.

7



Эксперименты проводились в среде MATLAB® (версия R2022b), функционирующей под
управлением операционной системы Майкрософт® Windows® 10 (версия 21H2). Компью-
тер, на котором проводились вычисления, имел следующие характеристики: процессор Intel®
Core™ i5-10400F CPU (2.90 GHz, 6 ядер, 12 потоков), оперативная память — 16 ГБ.

Исследуемая система неравенств была основана на реальных данных материального ба-
ланса химического предприятия. Параметры решаемой задачи были следующими: n � 136,
m � 285, b � 1 P Rm, система (1) — совместна. Для всех исследуемых алгоритмов выбиралось
одинаковое начальное начальное приближение u0 � 10 � b. Значения параметров релаксации в
отображении (24) и во всех отображениях вида (4) были одинаковыми: λ � λi � 1.6 для всех
i � 1, 2, . . . ,m.

Результаты вычислительных экспериментов представлены на рисунке.

0 30 60 90
10�6

10�5

10�4

10�3

10�2

10�1

100

101

k

δp
x
k
q

φp1qpxq, α1� . . . �αm � 1{m, T � 0.6632 c
φp2qpxq, T � 0.1314 c
φp3qpxq, T � 0.0144 c
Aλ

U�
puq, T � 0.0134 c (0.00804 c+0.00536 c)

Рис. Пошаговые ℓ8-нормы невязок системы (1) с реальными данными, полученные
алгоритмами, основанными на отображениях (5)–(7) и (24).

Приведенные графики свидетельствуют о работоспособности нового алгоритма и его суще-
ственно более быстрой «пошаговой сходимости» по сравнению с алгоритмами, основанными
на отображениях (5)–(7). При этом общее время (T ), затраченное новым алгоритмом, оказа-
лось сопоставимым со временем, затрачиваемым алгоритмом, основанным на отображении (7)
(стратегия экстремального проектирования). Числа, приведенные в скобках, детализируют
общее время, затраченное новым алгоритмом: первое число — время, затраченное на вы-
числение матрицы A� (использовалась основанная на построении сингулярного разложения
матрицы A функция MATLAB® pinv с параметром допуска tol � 10�8). Второе число
— время, затраченное на все остальные вычислительные операции.

8. Заключение. В работе получено теоретическое обоснование нового алгоритма решения
систем линейных неравенств и предварительные результаты его тестирования на реальной
задаче средней размерности.

Во второй части статьи будут представлены результаты расширенных численных экспери-
ментов. В частности, предполагается рассмотреть случаи, когда размерность пространства,
содержащего полиэдр X¤ :�

 
x P Rn | Ax ¤ b

(
, варьируется в широком диапазоне значе-

ний (от 102 до 106), а сам полиэдр при этом обладает разными геометрическими свойствами:
пуст или непуст, является ограниченным или неограниченным, одноэлементным, телесным,
предельно узким с неравномерно вытянутыми координатами и т. п.

Также будут исследованы разные подходы по решению системы (8) (с проектированием
на неотрицательный ортант только дополнительных переменных и подход, представленный
в данной работе) с учетом влияния обусловленности соответствующих матриц.

Благодарность. Авторы хотели бы поблагодарить рецензентов за ценные замечания,
идеи и рекомендации (в том числе касающиеся принципов организации предстоящих вычис-
лительных экспериментов).
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A new algorithm for solving a system of linear inequalities using the accelerated Fejér process
of searching for a non-negative solution to a system of linear algebraic equations is presented.
This article, the first part, presents the theoretical justification of the algorithm and the results
of a preliminary (illustrative) computational experiment on a system of medium-dimensional
inequalities with real industrial data. The experimental results demonstrate the operability
of the proposed algorithm and a higher convergence rate (estimated by the time spent and
the number of iterations performed) compared to the three main variants of the “classical”
Fejér algorithms for solving systems of linear inequalities based on the strategies of weighted,
sequential and extreme combining Fejér algorithms. projection mappings into half-spaces
corresponding to the individual inequalities of the inequality system under study. A more
detailed experimental study of the proposed algorithm will be performed in the second part
of the article.
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