See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/335891396

Feature selection in SVM via polyhedral k-norm

Article in Optimization Letters • February 2020
DOI: 10.1007/s11590-019-01482-1

Manlio Gaudioso
Università della Calabria
106 PUBLICATIONS 1,684 CITATIONS SEE PROFILE

Enrico Gorgone

Università degli studi di Cagliari
22 PUBLICATIONS 253 CItations
SEE PROFILE

Jean-Baptiste Hiriart-Urruty
Paul Sabatier University - Toulouse III
206 PUBLICATIONS 8,686 CITATIONS
SEE PROFILE

FEATURE SELECTION IN SVM VIA POLYHEDRAL K-NORM

M. GAUDIOSO*, E. GORGONE \dagger, AND J.-B. HIRIART-URRUTY \ddagger

Abstract

We treat the Feature Selection problem in the Support Vector Machine (SVM) framework by adopting an optimization model based on use of the ℓ_{0} pseudo-norm. The objective is to control the number of non-zero components of the normal vector to the separating hyperplane, while maintaining satisfactory classification accuracy. In our model the polyhedral norm $\|\cdot\|_{[k]}$, intermediate between $\|\cdot\|_{1}$ and $\|\cdot\|_{\infty}$, plays a significant role, allowing us to come out with a DC (Difference of Convex) optimization problem that is tackled by means of DCA algorithm.

The results of several numerical experiments on benchmark classification datasets are reported.

Keywords. Sparse optimization, Cardinality constraint, k-norm, Support Vector Machine, DC optimization.

1. Introduction. A relevant problem in binary classification is to design good quality classifiers by resorting to a minimal number of sample parameters. One of the main motivations is to gather a more clear interpretation of phenomena underlying the class membership distribution of the samples. In the more general setting of Machine Learning, such problem falls in the area of Feature Selection (FS), which has been the object of intensive research in recent decades (see, e.g., the survey [13]).

In this paper we focus on FS in binary classification (see [7] and [28] for FS models in other areas of machine learning, such as unsupervised learning and regression, respectively). In particular, we consider the Support Vector Machine (SVM) framework [29], [5], where binary classification is pursued by finding an "optimal" two-class separating hyperplane, either in the original parameter (or "feature") space or upon appropriate kernel transformation.

Numerical optimization algorithms play a relevant role in SVM area and, more specifically, in FS. The problem is to guarantee a reasonable trade-off between classification accuracy and the number of features actually used. Controlling the latter consists basically in minimizing the number of non-zero components of the normal vector to the separating hyperplane.

The literature offers several contributions. In [1] NP-hardness of the problem has been assessed.
In [3] and [4] the model adopted is based on considering the step function for each component of the normal vector; discontinuity is handled by introducing two different approximations, the standard sigmoid and a concave exponential, respectively. In particular, by adopting the concave approximation, FS problem is tackled by solving a finite sequence of linear programs. Different approximations are given in [32] and in [25], where, in particular, the concave and separable objective functions, derived by the approximations, are handled via variants of Frank-Wolfe method.

It is interesting to note that in [20] an approximation scheme of the step function is cast into a DC (Difference of Convex) framework, providing thus the opportunity of resorting to the algorithmic machinery for dealing with such class of nonconvex problems. An early survey on properties and relevance of this class of functions is in [16] (see al so [26]).

Parallel to treatment of FS via approximation methods, Mixed Integer Programming formulations have been successfully adopted. The idea is to introduce binary variables, one for each component of the normal vector to the supporting hyperplane, that are switched to " 1 " if and only if the corresponding component is non-zero. From among the proposed approaches, we recall here [21], [2], [9].

[^0]In this paper we tackle FS in the general setting of sparse optimization, where one is faced to the (regularized) problem:

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}} f(x)+\|x\|_{0} \tag{1.1}
\end{equation*}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $\|\cdot\|_{0}$ is the ℓ_{0} pseudo-norm, which counts the number of non-zero component of any vector. Sometimes sparsity of the solution, instead of acting on the objective function, is enforced by introducing a constraint on the ℓ_{0} pseudo-norm of the solution, thus defining a cardinality-constraint problem [24].

In many applications, the ℓ_{0} pseudo-norm in (1.1) is replaced by the ℓ_{1}-norm, which is definitely more tractable from the computational point of view, yet ensuring sparsity, to a certain extent (see [33] for a discussion on a general regularization scheme).

In the seminal paper [31], a class of polyhedral norms (the k-norms), intermediate between $\|.\|_{1}$ and $\|\cdot\|_{\infty}$, is introduced to obtain sparse approximation solutions to systems of linear equations. The use of other norms to recover sparsity is described in [8]. In more recent years the use of k-norms has received much attention and has led to several proposals for dealing with ℓ_{0} pseudo-norm cardinality constrained problem [15], [34], [27], [12].

In this paper we cast the classic SVM approach into the sparse optimization framework (1.1). Our work is inspired by [12], the main difference being in the explicit (and not parametric) minimization of the ℓ_{0} pseudo-norm. We formulate our $\mathrm{SVM}-\ell_{0}$ pseudo-norm problem ($S V M_{0}$, for short) and we tackle it by means of a penalization approach which allows us to put the problem in DC form. The algorithm adopted is of DCA type [19].

The paper is organized as follows. In Section 2 we recall first the standard SVM model and introduce the FS problem as a sparse optimization one. Then we discuss the use of the polyhedral k-norm in sparse optimization, coming out with a DC formulation. On such basis we formulate in Section (3) the $S V M_{0}$ problem. The results of several numerical experiments on benchmark datasets are in Section 4. Some conclusions are finally drawn in Section 5.
2. Feature Selection and ℓ_{0} pseudo-norm minimization. The binary classification problem in the SVM setting is usually put in the following form. Given two point-sets $\mathcal{A} \triangleq\left\{a_{1}, \ldots, a_{m_{1}}\right\}$ and $\mathcal{B} \triangleq\left\{b_{1}, \ldots, b_{m_{2}}\right\}$ in \mathbb{R}^{n}, we look for linear separation of the two sets, that is for a hyperplane $\{x \mid x \in$ $\left.\mathbb{R}^{n}, x^{\top} w^{\prime}=\gamma^{\prime}\right\},\left(w^{\prime} \in \mathbb{R}^{n}, \gamma^{\prime} \in \mathbb{R}\right)$, strictly separating \mathcal{A} and \mathcal{B}, thus ensuring

$$
a_{i}^{\top} w^{\prime}<\gamma^{\prime}, \quad i=1, \ldots, m_{1} \quad \text { and } \quad b_{l}^{\top} w^{\prime}>\gamma^{\prime}, \quad l=1, \ldots, m_{2}
$$

It is easy to verify that such a hyperplane exists if and only if there exists a hyperplane $\{x \mid x \in$ $\left.\mathbb{R}^{n}, x^{\top} w=\gamma\right\},\left(w \in \mathbb{R}^{n}, \gamma \in \mathbb{R}\right)$, such that

$$
a_{i}^{\top} w \leq \gamma-1, \quad i=1, \ldots, m_{1} \quad \text { and } \quad b_{l}^{\top} w \geq \gamma+1, \quad l=1, \ldots, m_{2}
$$

Gordan's theorem of the alternative [22] guarantees linear separation if and only if $\operatorname{conv} \mathcal{A} \cap \operatorname{conv} \mathcal{B}=\emptyset$, a property which is not usually known in advance to hold.

Consequently, an error function of (w, γ), which is convex, piecewise linear and nonnegative, is introduced. It assumes zero value if and only if (w, γ) actually defines a (strictly) separating hyperplane and it has the form:

$$
\begin{equation*}
e(w, \gamma)=\sum_{i=1}^{m_{1}} \max \left\{0, a_{i}^{\top} w-\gamma+1\right\}+\sum_{l=1}^{m_{2}} \max \left\{0,-b_{l}^{\top} w+\gamma+1\right\} \tag{2.1}
\end{equation*}
$$

The SVM approach consists in solving the following convex problem:

$$
\begin{equation*}
\min _{w, \gamma}\|w\|+C e(w, \gamma) \tag{2.2}
\end{equation*}
$$

where the addition of the norm of w to the error function is aimed at obtaining a maximum-margin separation, C being a positive trade-off parameter [5].

Several variants of problem (2.2) are available in literature, according to possible choices of the norm. The ℓ_{2} norm is mostly adopted, while for feature selection purposes the ℓ_{1} norm is preferred. We observe that the latter plays also a relevant role in many areas of machine learning through the so called LASSO approach (see, e.g. [28], [14]). Weighted sums of the ℓ_{1} and ℓ_{2} norms have been considered within the elastic net [35] and the doubly regularized SVM [30] approaches.

In the following two sub-sections we address first problem (2.2), casting it into the sparse optimization paradigm (1.1), by means of the ℓ_{0} pseudo-norm. Then we discuss a DC formulation of the resulting problem.
2.1. Sparse minimization and k-norms. As previously mentioned, the ℓ_{0} pseudo-norm counts the number of non-zero components of any vector. We resume here its basic properties and highlight the relationship with polyhedral k-norm, which allows us to reformulate the sparse optimization problem (1.1)).

The usual notation $\|\cdot\|_{0}$ for indicating the ℓ_{0} pseudo-norm is motivated by the observation

$$
\begin{equation*}
\left(\|\cdot\|_{p}\right)^{p} \rightarrow\|\cdot\|_{0} \quad \text { when } \quad p \rightarrow 0 \tag{2.3}
\end{equation*}
$$

Relevant properties of function $x \mapsto\|x\|_{0}$ are:
i) it is lower-semicontinuous, that is to say

$$
\lim \inf _{k \rightarrow+\infty}\left\|x_{k}\right\|_{0} \geq\|x\|_{0} \quad \text { whenever } \quad x_{k} \rightarrow x
$$

a property which is fundamental in view of using descent algorithms;
ii) it is homogeneous of degree $0,\left(\|\lambda x\|_{0}=\|x\|_{0}\right.$, for $\left.\lambda \neq 0\right)$; constancy along rays makes difficult the design of minimization algorithms;
iii) the convex hull of $\|\cdot\|_{0}$ on the ball $\left\{x \mid\|x\|_{\infty} \leq r\right\}$ is exactly the function $\frac{1}{r}\left\|\|_{1}\right.$. This is a mathematical justification for frequent substitution of $\|\cdot\|_{0}$ by $\|\cdot\|_{1}$, which in fact ensures, in practical applications, attractive sparsity properties of the solution.
In our approach to FS we fix $\|w\|_{0}$ in formulation (2.2), thus we consider a sparse optimization problem of the type

$$
\begin{equation*}
f_{0}^{*}=\min _{x \in \mathbb{R}^{n}} f(x)+\|x\|_{0} \tag{2.4}
\end{equation*}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, n \geq 2$, is convex, not necessarily differentiable. We observe, in passing, the significant parallelism between sparse optimization and certain problems in matrix optimization [23], [17]. See, in particular, the recent approach to the rank function minimization described in [12].

In tackling problem (2.4) we resort to the vector k-norm of x, indicated by $\|x\|_{[k]}$, which is defined as the sum of k largest components (in modulus) of $x, k=1, \ldots, n$. In fact $\|\cdot\|_{[k]}$ is a polyhedral norm, intermediate between $\|\cdot\|_{1}$ and $\|\cdot\|_{\infty}$.

The following properties hold:
i) $\|x\|_{\infty}=\|x\|_{[1]} \leq \ldots \leq\|x\|_{[k]} \leq \ldots\|x\|_{[n]}=\|x\|_{1}$;
ii) $\|x\|_{0} \leq k \Rightarrow\|x\|_{1}-\|x\|_{[s]}=0, \quad k \leq s \leq n$.

Moreover, it is easy to prove the equivalence, valid for $1 \leq k \leq n$,

$$
\begin{equation*}
\|x\|_{0} \leq k \quad \Leftrightarrow \quad\|x\|_{1}-\|x\|_{[k]}=0 \tag{2.5}
\end{equation*}
$$

which allows to replace any constraint of the type $\|x\|_{0} \leq k$ with a difference of norms, that is a DC constraint.

Taking any point $\bar{x} \in \mathbb{R}^{n}$ and letting $I_{[k]} \triangleq\left\{i_{1}, \ldots, i_{k}\right\}$ be the index set of k largest in modulus components of \bar{x}, a subgradient $\bar{g}^{[k]}$ of the vector k-norm at \bar{x} can be calculated by setting:

$$
\bar{g}_{i}^{[k]}=\left\{\begin{array}{lll}
1 & \text { if } & i \in I_{[k]} \text { and } \bar{x}_{i} \geq 0 \\
-1 & \text { if } & i \in I_{[k]} \text { and } \bar{x}_{i}<0 \\
0 & & \text { otherwise }
\end{array}\right.
$$

To tackle problem (2.4), we start from the observation (see [23], [34]):

$$
\|x\|_{[k]}=\max _{y \in \psi_{k}} y^{\top} x
$$

where ψ_{k} is the subdifferential of $\|\cdot\|_{[k]}$ at point 0 ,

$$
\psi_{k}=\left\{y \in \mathbb{R}^{n} \mid y=u-v, 0 \leq u, v \leq e,(u+v)^{\top} e=k\right\}
$$

with e being the vector of n ones. Then we formulate the following problem:

$$
\begin{align*}
f_{c}^{*}= & \min _{x, u, v, z} f(x)+z \tag{2.6}\\
& e^{\top}(u+v)=z \tag{2.7}\\
& (u-v)^{\top} x \geq\|x\|_{1} \tag{2.8}\\
& 0 \leq u, v \leq e, \quad x \in \mathbb{R}^{n} . \tag{2.9}
\end{align*}
$$

REmark 2.1. From $\|x\|_{1} \geq\|x\|_{[k]}, k=1, \ldots, n$ it follows that at any feasible point constraint (2.8)) is satisfied by equality. The following proposition highlights the relationship, at the optimum, between variable x and variables u, v.

Proposition 2.2. At any optimal (local) solution $\left(x^{*}, u^{*}, v^{*}, z^{*}\right)$ of problem (2.6)-(2.9), the following relations hold for $j=1, \ldots, n$:

$$
\left\{\begin{align*}
& x_{j}^{*}>0 \Leftrightarrow u_{j}^{*}=1 \tag{2.10}\\
& x_{j}^{*}<0 \Leftrightarrow \\
& v_{j}^{*}=1 \\
& x_{j}^{*}=0 \Leftrightarrow \\
& u_{j}^{*}=v_{j}^{*}=0
\end{align*}\right.
$$

Proof. Note first that u_{j}^{*} and v_{j}^{*} cannot be both positive. In fact, in such case the solution obtained by replacing u_{j}^{*} and v_{j}^{*} by $u_{j}^{*}-\delta_{j}$ and $v_{j}^{*}-\delta_{j}$, with $\delta_{j} \triangleq \min \left\{u_{j}^{*}, v_{j}^{*}\right\}>0$, would be still feasible and would reduce the objective function value.

Now observe that, while constraint (2.9) ensures

$$
-\left|x_{j}\right| \leq x_{j}\left(u_{j}-v_{j}\right) \leq\left|x_{j}\right|, \quad j=1, \ldots, n
$$

satisfaction of constraint (2.8) guarantees $x_{j}\left(u_{j}-v_{j}\right)=\left|x_{j}\right|, j=1, \ldots, n$. Thus it is proved, in particular, $x_{j}^{*}>0 \Rightarrow u_{j}^{*}=1\left(x_{j}^{*}<0 \Rightarrow v_{j}^{*}=1\right)$.

The implication $x_{j}^{*}=0 \Rightarrow u_{j}^{*}=v_{j}^{*}=0$ can be proved by a simple contradiction argument, taking into account optimality of the solution. The same contradiction argument guarantees that the implications $x_{j}^{*}>0 \Leftarrow u_{j}^{*}=1\left(x_{j}^{*}<0 \Leftarrow v_{j}^{*}=1\right)$ hold true, while the last implication $x_{j}^{*}=0 \Leftarrow u_{j}^{*}=v_{j}^{*}=0$ can be proved by observing that $u_{j}^{*}=v_{j}^{*}=0$ and $x_{j}^{*} \neq 0$ would lead to violation of constraint (2.8).

Remark 2.3. Implications (2.10) ensure $z^{*}=\left\|x^{*}\right\|_{0}$. Moreover, letting $\left(x^{*}, u^{*}, v^{*}, z^{*}\right)$ be any local minimum of problem (2.6)-(2.9), then x^{*} is a local minimum for problem (2.4).

By eliminating the scalar variable z in problem (2.6)-(2.9) we come out with the reformulation

$$
\begin{align*}
f_{c}^{*}= & \min _{x, u, v} f(x)+e^{\top}(u+v) \tag{2.11}\\
& (u-v)^{\top} x \geq\|x\|_{1} \tag{2.12}\\
& 0 \leq u, v \leq e, \quad x \in \mathbb{R}^{n} \tag{2.13}
\end{align*}
$$

which we approach by penalizing the nonlinear nonconvex constraint (2.12) through the scalar penalty parameter $\sigma>0$. We obtain

$$
\begin{gather*}
f_{c}(\sigma)=\min _{x, u, v} f(x)+e^{\top}(u+v)+\sigma\left(\|x\|_{1}-(u-v)^{\top} x\right) \tag{2.14}\\
0 \leq u, v \leq e, \quad x \in \mathbb{R}^{n} . \tag{2.15}
\end{gather*}
$$

Problem (2.14)-(2.15) is box-constrained and nonconvex, due to presence of a bilinear term in the objective function. We introduce next a possible DC decomposition.
2.2. DC decomposition. To obtain the required decomposition, we observe first that, letting $p^{\top} \triangleq\left(x^{\top}, u^{\top}, v^{\top}\right)$, the term

$$
q(p) \triangleq(v-u)^{\top} x
$$

in (2.14) can be written in DC form as

$$
q(p)=p^{\top} Q_{1} p-p^{\top} Q_{2} p
$$

where the symmetric positive semidefinite matrices Q_{1} and Q_{2} of dimension $(3 n, 3 n)$ are as follows:

$$
Q_{1}=\frac{1}{4}\left(\begin{array}{rrr}
2 I & -I & I \tag{2.16}\\
-I & I & 0 \\
I & 0 & I
\end{array}\right)
$$

and

$$
Q_{2}=\frac{1}{4}\left(\begin{array}{rrr}
2 I & I & -I \tag{2.17}\\
I & I & 0 \\
-I & 0 & I
\end{array}\right)
$$

with I and 0 being, respectively, the identity matrix and the zero matrix of dimension (n, n).
Summing up, the objective function (2.14) is decomposed as follows:

$$
f(x)+e^{\top}(u+v)+\sigma\left(\|x\|_{1}-(u-v)^{\top} x\right)=h_{1}(p)-h_{2}(p)
$$

with

$$
h_{1}(p) \triangleq f(x)+e^{\top}(u+v)+\sigma\left(\|x\|_{1}+p^{\top} Q_{1} p\right)
$$

and

$$
h_{2}(p) \triangleq \sigma p^{\top} Q_{2} p .
$$

Before concluding the Section, we state a property related to parametric normalization of a convex function via the ℓ_{1} norm. It will be useful in explaining the role of parameter σ in the numerical experiments of Section 4.

Proposition 2.4. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex and define, for $\sigma>0, f_{\sigma}(x)=f(x)+\sigma\|x\|_{1}$. If

$$
\sigma>\min _{g \in \partial f(0)}\|g\|_{\infty}
$$

then $x^{*}=0$ is the unique minimum of f_{σ}.
Proof. Our aim is to prove

$$
\begin{equation*}
f(x)+\sigma\|x\|_{1}>f(0) \quad \forall x \in \mathbb{R}^{n}, \quad x \neq 0 \tag{2.18}
\end{equation*}
$$

According to the definition of $g \in \partial f(0)$,

$$
f(x) \geq f(0)+g^{\top} x, \quad \forall x \in \mathbb{R}^{n}
$$

whence

$$
f(x)+\sigma\|x\|_{1} \geq f(0)+\sigma\|x\|_{1}+g^{\top} x, \quad \forall x \in \mathbb{R}^{n}
$$

Since $g^{\top} x \geq-\|g\|_{\infty}\|x\|_{1}$, we infer from the above

$$
f(x)+\sigma\|x\|_{1} \geq f(0)+\left(\sigma-\|g\|_{\infty}\right)\|x\|_{1}, \quad \forall x \in \mathbb{R}^{n}
$$

To ensure (2.18) it suffices fo have $\sigma-\|g\|_{\infty}>0$ for one $g \in \partial f(0)$. This is secured with the assumption $\sigma>\min _{g \in \partial f(0)}\|g\|_{\infty}$.

In next Section, after recalling the standard ℓ_{1} norm formulation of the SVM model, we state the ℓ_{0} FS model and we adapt to it the previously defined DC decomposition.
3. The ℓ_{0}-SVM problem $\left(\mathbf{S V M}_{\mathbf{0}}\right)$. We rewrite first the SVM model (2.2), taking into account the definition (2.1) of the classification error and adopting the ℓ_{1} norm. We obtain problem $S V M_{1}$.

$$
\begin{equation*}
z^{*}=\min _{w, \gamma, \xi, \zeta}\|w\|_{1}+C\left(\sum_{i=1}^{m_{1}} \xi_{i}+\sum_{l=1}^{m_{2}} \zeta_{l}\right) \tag{3.1}
\end{equation*}
$$

subject to

$$
\begin{array}{ll}
a_{i}^{\top} w-\gamma+1 \leq \xi_{i}, & i=1, \ldots, m_{1} \\
-b_{l}^{\top} w+\gamma+1 \leq \zeta_{l}, & l=1, \ldots, m_{2} \\
\xi_{i} \geq 0, & i=1, \ldots, m_{1} \\
\zeta_{l} \geq 0, & l=1, \ldots, m_{2} \tag{3.5}
\end{array}
$$

where the nonnegative auxiliary variables $\xi_{i}, i=1, \ldots, m_{1}$ and $\zeta_{l}, l=1, \ldots, m_{2}$ have been introduced to eliminate nonsmoothness in the definition (2.1).

Moreover, by letting

$$
w=w^{+}-w^{-}, w^{+}, w^{-} \geq 0
$$

and indicating by e the vector of ones of dimension n, the above problem can be rewritten in a Linear Programming form as follows

$$
\begin{equation*}
z^{*}=\min _{w^{+}, w^{-}, \gamma, \xi, \zeta} e^{\top}\left(w^{+}+w^{-}\right)+C\left(\sum_{i=1}^{m_{1}} \xi_{i}+\sum_{l=1}^{m_{2}} \zeta_{l}\right) \tag{3.6}
\end{equation*}
$$

subject to

$$
\begin{array}{ll}
a_{i}^{\top}\left(w^{+}-w^{-}\right)-\gamma+1 \leq \xi_{i}, & i=1, \ldots, m_{1} \\
-b_{l}^{\top}\left(w^{+}-w^{-}\right)+\gamma+1 \leq \zeta_{l}, & l=1, \ldots, m_{2} \\
\xi_{i} \geq 0, & i=1, \ldots, m_{1} \\
\zeta_{l} \geq 0, & l=1, \ldots, m_{2},
\end{array}
$$

$$
\begin{equation*}
w^{+} \geq 0, w^{-} \geq 0 \tag{3.11}
\end{equation*}
$$

Of course (3.1)-(3.5) or (3.6)-(3.11) are equivalent formulations of $S V M_{1}$.
We remark that choice of $\|\cdot\|_{1}$ in (2.2), instead of $\|\cdot\|_{2}$, has a beneficial effect in terms of feature selection (see [3]).

To guarantee, however, a better control on the number of features actually entering the classification process, we replace $\|\cdot\|_{1}$ with $\|\cdot\|_{0}$ into the model (3.1)-(3.5).

In the sequel we tailor the sparse optimization approach via k-norm of previous section to Feature

Selection in SVM model. We obtain the $S V M_{0}$ problem

$$
\begin{equation*}
z^{*}=\min _{w^{+}, w^{-}, \gamma, \xi, \zeta, u, v} C\left(\sum_{i=1}^{m_{1}} \xi_{i}+\sum_{l=1}^{m_{2}} \zeta_{l}\right)+e^{\top}(u+v) \tag{3.12}
\end{equation*}
$$

subject to

$$
\begin{array}{ll}
(u-v)^{\top}\left(w^{+}-w^{-}\right) \geq e^{\top}\left(w^{+}+w^{-}\right) & \\
a_{i}^{\top}\left(w^{+}-w^{-}\right)-\gamma+1 \leq \xi_{i}, & i=1, \ldots, m_{1} \\
-b_{l}^{\top}\left(w^{+}-w^{-}\right)+\gamma+1 \leq \zeta_{l}, & l=1, \ldots, m_{2} \\
\xi_{i} \geq 0, & i=1, \ldots, m_{1} \\
\zeta_{l} \geq 0, & l=1, \ldots, m_{2} \\
w^{+} \geq 0, w^{-} \geq 0 & \\
0 \leq u, v \leq e &
\end{array}
$$

Penalizing, as in (2.14), the (nonlinear) constraint (3.13) we obtain

$$
\begin{equation*}
z^{*}=\min _{w^{+}, w^{-}, \gamma, \xi, \zeta, u, v} e^{\top}(u+v)+C\left(\sum_{i=1}^{m_{1}} \xi_{i}+\sum_{l=1}^{m_{2}} \zeta_{l}\right)+\sigma\left(e^{\top}\left(w^{+}+w^{-}\right)-(u-v)^{\top}\left(w^{+}-w^{-}\right)\right) \tag{3.20}
\end{equation*}
$$

subject to

$$
\begin{align*}
& a_{i}^{\top}\left(w^{+}-w^{-}\right)-\gamma+1 \leq \xi_{i}, \quad i=1, \ldots, m_{1} \tag{3.21}\\
& -b_{l}^{\top}\left(w^{+}-w^{-}\right)+\gamma+1 \leq \zeta_{l}, \quad l=1, \ldots, m_{2} \tag{3.22}\\
& \xi_{i} \geq 0, \quad i=1, \ldots, m_{1} \tag{3.23}\\
& \zeta_{l} \geq 0, \quad l=1, \ldots, m_{2} \tag{3.24}\\
& w^{+} \geq 0, \quad w^{-} \geq 0 \tag{3.25}\\
& 0 \leq u, v \leq e \tag{3.26}
\end{align*}
$$

REmark 3.1. Definition of an exact nondifferentiable penalty function of the type described in [6] would require the introduction into the objective function of the term

$$
\sigma \max \left(0, e^{\top}\left(w^{+}+w^{-}\right)-(u-v)^{\top}\left(w^{+}-w^{-}\right)\right)
$$

which in our case, according to remark (2.1), is simply replaced by

$$
\sigma\left(e^{\top}\left(w^{+}+w^{-}\right)-(u-v)^{\top}\left(w^{+}-w^{-}\right)\right)
$$

giving rise to a differentiable exact penalty function
In a way analogous to that followed in previous Section, problem (3.20)-(3.26) can be put in DC form. In fact, letting $s^{\top} \triangleq\left(w^{+T}, w^{-T}, u^{\top}, v^{\top}\right)$, the function

$$
r(s) \triangleq(v-u)^{\top}\left(w^{+}-w^{-}\right)
$$

can be rewritten as

$$
r(s)=s^{\top} \hat{Q}_{1} s-s^{\top} \hat{Q}_{2} s
$$

where the symmetric positive semidefinite matrices \hat{Q}_{1} and \hat{Q}_{1} of dimension $(4 n, 4 n)$ are defined as follows

$$
\hat{Q}_{1}=\frac{1}{4}\left(\begin{array}{rrrr}
2 I & -2 I & -I & I \tag{3.27}\\
-2 I & +2 I & I & -I \\
-I & I & I & 0 \\
I & -I & 0 & I
\end{array}\right)
$$

and

$$
\hat{Q}_{2}=\frac{1}{4}\left(\begin{array}{rrrr}
2 I & -2 I & I & -I \tag{3.28}\\
-2 I & +2 I & -I & I \\
I & -I & I & 0 \\
-I & I & 0 & I
\end{array}\right)
$$

with I and 0 being, respectively, the identity and the zero matrix of dimension (n, n).
The objective function is then decomposed in DC form $f_{1}\left(w^{+}, w^{-}, \gamma, \xi, \zeta, u, v\right)-f_{2}\left(w^{+}, w^{-}, u, v\right)$ with

$$
f_{1}\left(w^{+}, w^{-}, \gamma, \xi, \zeta, u, v\right)=e^{\top}(u+v)+C\left(\sum_{i=1}^{m_{1}} \xi_{i}+\sum_{l=1}^{m_{2}} \zeta_{l}\right)+\sigma\left(e^{\top}\left(w^{+}+w^{-}\right)+s^{\top} \hat{Q}_{1} s\right)
$$

and

$$
f_{2}\left(w^{+}, w^{-}, u, v\right)=\sigma s^{\top} \hat{Q}_{1} s
$$

We apply to problem above the DCA method [19], which tackles the unconstrained minimization of a function $q: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
q(x)=q_{1}(x)-q_{2}(x)
$$

with q_{1} and q_{2} convex, by solving a sequence of linearized convex problems. In particular, letting $x^{(k)}$ be the estimate of a (local) minimum of g at iteration k, the next iterate $x^{(k+1)}$ is calculated as

$$
x^{(k+1)}=\arg \min _{x \in \mathbb{R}^{n}}\left\{q_{1}(x)-\left[q_{2}\left(x^{(k)}\right)+g^{(k) \top}\left(x-x^{(k)}\right)\right]\right\},
$$

with $g^{(k)} \in \partial q_{2}\left(x^{(k)}\right)$. For other methods to solve DC problems see [18], [10], [11] and the references therein.

We remark that, in applying the successive linearization method to our case, a convex quadratic minimization problem is solved at each iteration.
3.1. Mixed Binary Programming formulation $\mathbf{M B P}_{\mathbf{0}}$. Before reporting in next Section the results of the implementation of our algorithm to solve $S V M_{0}$, we provide the following mixed binary
programming formulation $M B P_{0}[9]$ of the ℓ_{0} pseudo norm FS, which is based on the introduction of the set of binary variables $y_{j}, j=1, \ldots, n$.

$$
z^{*}=\min _{w, \gamma, \xi, \zeta, y}\|w\|_{1}+C\left(\sum_{i=1}^{m_{1}} \xi_{i}+\sum_{l=1}^{m_{2}} \zeta_{l}\right)+D \sum_{j=1}^{n} y_{j}
$$

subject to

$$
\begin{array}{lr}
a_{i}^{\top} w+\gamma+1 \leq \xi_{i}, & i=1, \ldots, m_{1} \\
-b_{l}^{\top} w-\gamma+1 \leq \zeta_{l}, & l=1, \ldots, m_{2} \\
-u_{j} y_{j} \leq w_{j} \leq u_{j} y_{j}, & j=1, \ldots, n \\
\xi_{i} \geq 0, & i=1, \ldots, m_{1} \\
\zeta_{l} \geq 0, & l=1, \ldots, m_{2} \\
y_{j} \in\{0,1\}, & j=1, \ldots, n,
\end{array}
$$

where $u_{j}>0, j=1, \ldots, n$, is a given bound on the modulus of the j-th component of w (see [9] for a discussion on setting the u_{j} 's) . The binary variable $y_{j}, j=1, \ldots, n$ is equal to 1 at the optimum if and only if $w_{j} \neq 0, j=1, \ldots, n$. Consequently the term $\sum_{j=1}^{n} y_{j}$ in the objective function represents the ℓ_{0} pseudo-norm of w. The positive parameter D provides the trade-off between the ℓ_{0} pseudo-norm objective and that of the $S V M_{1}$ problem (3.6)-(3.11).
4. Numerical experiments. The core of our numerical experiments has been the comparison of the results provided by $S V M_{0}$ with those of $M B P_{0}$. We have also implemented, as a useful reference, the standard $S V M_{1}$ model. For better explanation of the results of $S V M_{0}$ we have introduced a discussion on tuning of the penalty parameter σ.

We have also provided some additional results comparing our approach with the smoothing methods described in [4] and [25].
4.1. $\mathbf{S V M}_{\mathbf{0}}$ vs. $\mathbf{M B P}_{\mathbf{0}}$. We have performed our experiments on two groups of five datasets each. They are the same datasets adopted as benchmark for the feature selection method described in [9]. In particular in datasets 1-5 (Group 1), available at http://www.tech.plym.ac.uk/spmc/, the number of samples is small with respect to the number of features. The opposite happens for Datasets 6-10 (Group 2), which are available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/. Thus for the latter ones a certain class-overlap is expected.

The datasets are listed in Table 4.1, where $m=m_{1}+m_{2}$ is the total number of samples.
Table 4.1
Description of the datasets

Datasets of Group 1	m	n	Datasets of Group 2	m	n
Carcinoma (CARC)	36	7457	Breast Cancer (BC)	683	10
DLBCL	77	7129	PIMA Indians Diabetes (PIMA)	768	8
Leukemia (LEK)	72	5327	HEART	270	13
Tumor1 (TUM1)	60	7129	Ionosphere (IONO)	351	34
Tumor2 (TUM2)	50	12625	Liver Disorders (LIVER)	345	5

As a possible reference, we report first the results of the $S V M_{1}$ problem provided by CPLEX solver.

A standard tenfold cross validation has been performed. The results are in Table (4.2), where the columns "Test" and "Train" indicate the average testing and training correctness, respectively, expressed as percentage of samples correctly classified. Columns " $\|w\|_{1}$ " and "Time" report the average ℓ_{1} norm of w and the average execution time (in seconds). Finally columns "\%ft $(0) "-" \% \mathrm{ft}(-9) "$ report the average percentage of components of w whose modulus is greater than or equal to $10^{0}-10^{-9}$, respectively. Note that, assuming, conventionally, to be equal to "zero" any component w_{j} of w such that $\left|w_{j}\right|<10^{-9}$, the percentage of zero-components is $(100-\% f t(-9))$.

Two different values of parameter C have been adopted for the two dataset groups. In fact we have taken the "best" values obtained through the so called "Model selection" phase performed in [9], where a grid of values ranging in the interval $\left[10^{-1}, 10^{2}\right]$ has been considered.

TABLE 4.2
SV M_{1} - Cplex implementation - Tenfold Cross Validation

	$C=1$									
Dataset	Test	Train	$\|w\|_{1}$	Time	$\% \mathrm{ft}(0)$	$\% \mathrm{ft}(-2)$	$\% \mathrm{ft}(-4)$	$\% \mathrm{ft}(-9)$		
CARC	97.50	100.00	2.63	0.27	0.00	0.26	0.28	0.28		
DLBCL	94.29	100.00	5.07	0.54	0.00	0.42	0.44	0.44		
LEUK	96.67	100.00	4.45	0.37	0.00	0.54	0.58	0.58		
TUM1	76.67	100.00	7.09	0.52	0.00	0.53	0.55	0.55		
TUM2	80.50	100.00	5.12	0.69	0.00	0.23	0.24	0.24		
$C=10$										
BC	97.24	94.00	6.01	0.01	9.00	94.00	94.00	94.00		
PIMA	77.62	100.00	8.30	0.02	26.25	100.00	100.00	100.00		
HEART	86.83	100.00	7.27	0.01	12.31	100.00	100.00	100.00		
IONO	95.46	95.59	43.43	0.01	50.59	95.00	95.59	95.59		
LIVER	68.27	100.00	9.33	0.00	80.00	100.00	100.00	100.00		

Before reporting the results of the implementation of our algorithm to solve $S V M_{0}$, we illustrate in Tables 4.3 and 4.4 the results provided by CPLEX implementation of model $M B P_{0}$, described in Subsection 3.1, with maximum running time of 1000 seconds. Note that on some test problems, the maximum running time has been achieved with no optimality certification. The results we provide in such cases are related to the best solution found.

Table 4.3
MBP P_{0} - Cplex implementation - Tenfold cross validation - Group 1

	$C=1, D=0.01$								
Dataset	Test	Train	$\|w\|_{1}$	Time	$\% \mathrm{ft}(0)$	$\% \mathrm{ft}(-2)$	$\% \mathrm{ft}(-4)$	$\% \mathrm{ft}(-9)$	
CARC	92.50	100.00	2.65	302.07	0.00	0.16	0.16	0.16	
DLBCL	92.86	100.00	5.11	999.98	0.00	0.28	0.28	0.28	
LEUK	93.57	100.00	4.48	999.74	0.00	0.35	0.35	0.35	
TUM1	76.67	100.00	7.12	998.91	0.00	0.39	0.39	0.39	
TUM2	83.00	100.00	5.16	999.89	0.00	0.16	0.16	0.16	

Some comments are in order. We observe first that the average computation time for solving the Linear Program $S V M_{1}$ is negligible.

As for classification performance, comparison of Table 4.2 with Tables 4.3 and 4.4 highlights that the use of an explicit feature selection mechanism results in a mild downgrading of the classification correctness. Such phenomenon is compensated by the reduction in the percentage of the numerically significant features (columns" $\mathrm{ft}(0)$ "-" $\mathrm{ft}(-9) ")$.

Table 4.4
$M B P_{0}$ - Cplex implementation - Tenfold cross validation - Group 2

	$C=10, D=10$								
Dataset	Test	Train	$\|w\|_{1}$	Time	$\% \mathrm{ft}(0)$	$\% \mathrm{ft}(-2)$	$\% \mathrm{ft}(-4)$	$\% \mathrm{ft}(-9)$	
BC	96.42	97.15	5.73	0.06	17.00	68.00	68.00	68.00	
PIMA	75.87	77.26	7.75	0.06	26.25	78.75	78.75	78.75	
HEART	83.95	86.97	5.16	0.07	9.23	58.46	58.46	58.46	
IONO	88.29	94.62	27.06	2.03	36.18	45.29	45.29	45.29	
LIVER	63.02	62.95	3.00	0.01	60.00	60.00	60.00	60.00	

Coming now to our method (referred to, in the sequel, as the " $S V M_{0}$ Algorithm"), we report in Table 4.5 the results on the two groups of datasets.

We have added the two columns "\%Viol." and " $e^{\top}(u+v)$ ". In particular, column "\%Viol." reports the percentage ratio between the average violation of the relaxed constraint (3.13) and the average norm $\|w\|_{1}$. Column " $e^{\top}(u+v)$ " reports the average value of the scalar product $e^{\top}(u+v)$, which, for small values of the companion parameter "\%Viol.", reasonably approximates $\|w\|_{0}{ }^{\ddagger}$

Table 4.5
SV M M_{0} Algorithm - Tenfold cross validation

	$C=1$										
Dataset	σ	Test	Train	$\|w\|_{1}$	Time	\%Viol.	$e^{\top}(u+v)$	\%ft(0)	$\% \mathrm{ft}(-2)$	\%ft(-4)	$\% \mathrm{ft}(-9)$
CARC	4	97.50	100.00	6.90	39.40	3.00	2.10	0.03	0.05	0.06	0.06
DLBCL	4	91.43	98.57	12.83	260.48	0.50	3.51	0.05	0.06	0.06	0.06
LEUK	5	98.33	99.83	16.02	188.70	0.00	3.70	0.07	0.07	0.07	0.07
TUM1*	5	76.67	100.00	15.27	50.74	4.70	7.23	0.08	0.14	0.16	0.16
TUM2	4	81.00	96.03	7.40	69.68	7.29	3.05	0.02	0.05	0.06	0.06
	$C=10$										
Dataset	σ	Test	Train	$\|w\|_{1}$	Time	\%Viol.	$e^{\top}(u+v)$	\%ft(0)	\%ft(-2)	\%ft(-4)	\%ft(-9)
BC	63	93.17	92.48	1.36	0.59	0.29	1.32	2.00	34.00	34.00	34.00
PIMA	17	75.57	76.19	5.89	3.80	0.00	3.50	26.25	43.75	43.75	43.75
HEART	150	82.32	84.32	2.32	0.09	38.02	2.54	0.00	49.23	50.00	50.00
IONO	17	86.35	89.31	3.14	0.27	0.47	2.56	5.88	13.82	13.82	13.82
LIVER	80	65.60	66.63	4.88	0.19	0.00	2.60	46.00	52.00	52.00	52.00

We have run the algorithm on each dataset for different values of the penalty parameter σ, and we indicate in Table 4.5 the specific value of σ the results refer to.

Some comments follow.

- In terms of classification correctness, the results of the $S V M_{0}$ Algorithm are comparable with those of $M B P_{0}$.
- The $S V M_{0}$ Algorithm provides better results in terms of number of zero-components of w. In fact, the percentage of components conventionally assumed equal to zero, that is $(100-\% f t(-9))$, is significantly bigger, except that in two cases, in $S V M_{0}$ Algorithm than in $M B P_{0}$.
- The computation time is, for both algorithms, negligible on the datasets of Group 2 while it is remarkably smaller for $S V M_{0}$ Algorithm as far as datasets of Group 1 are concerned.
4.2. Tuning of the penalty parameter. In running the $S V M_{0}$ Algorithm, the most relevant issue is the appropriate tuning of the penalty parameter $\sigma>0$, which is, of course, dataset-specific. Two

[^1]aspects are to be taken into account.

- "Small" values of σ may lead to significant violation of the penalized constraint at the optimum of problem (3.20)-(3.23). Note that in such case, variables u and v may loose their "marker" role highlighted in Proposition (2.2).
- "Large" values of σ may result in trivial solutions $(w=0)$ to the penalized problem (see Proposition (2.4)).
To illustrate in details the impact on the solution of parameter σ, we analyze the results for increasing values of σ. In particular we focus on the datasets CARC and IONO, from the first and second group, respectively. The results are reported in Tables 4.6 and 4.7.

Table 4.6
Results on dataset CARC for different values of σ

Dataset: $C A R C ; C=1$										
σ	Test	Train	$\|w\|_{1}$	Time	\% Viol. $e^{\top}(u+v)$	$\% \mathrm{ft}(0)$	$\% \mathrm{ft}(-2)$	$\% \mathrm{ft}(-4)$	$\% \mathrm{ft}(-9)$	
1	95.00	100,00	2.62	14.45	100	0.00	0.00	0.23	0.25	0.25
2	94.17	100.00	3.50	73.13	44	0.87	0.01	0.14	0.15	0.15
4	97.50	100,00	6.90	39,40	3	2.10	0.03	0.05	0.06	0.06
5	91.67	100.00	6.26	41.41	1	2.07	0.02	0.03	0.03	0.03
6	85.00	98.33	7.23	68.53	0.1	2.18	0.03	0.03	0.03	0.03
7	75.83	96.99	6.08	93.80	0	2.20	0.03	0.03	0.03	0.03
12	65.83	81,40	2.32	81.04	0	0.80	0.01	0.01	0.01	0.01
16	58.33	57.59	0.0	1.81	0	0.00	0.00	0.00	0.00	0.00

TABLE 4.7
Results on dataset IONO for different values of σ

Dataset : IONO; C=10										
σ	Test	Train	$\|w\|_{1}$	Time	\% Viol.	$e^{\mid}(u+v)$	\%ft(0)	\%ft(-2)	\%ft(-4)	\%ft(-9)
1	87.61	94.23	19.39	0.36	52	4.16	18.82	72.94	73.24	73.24
2	87.94	93.53	11.21	0.22	50	4.34	9.41	62.06	63.53	63.53
4	87.96	92.55	7.58	0.26	42	4.31	6.18	47.35	47.35	47.35
10	87.63	89.38	4.23	0.24	19	2.90	5.88	18.53	19.41	19.41
17	86.35	89.31	3.14	0.29	15	2.56	5.88	13.82	13.82	13.82
30	80.80	83.47	1.83	0.23	6	1.77	3.82	7.65	7.94	7.04
50	74.77	74.68	1.00	0.26	3	0.97	2.94	2.94	2.94	2.94
64	64.33	64.24	0.0001	1.84	0	0.0001	0.00	0.00	0.29	0.29
93	64.33	64.24	0.00	0.16	0	0.00	0.00	0.00	0.00	0.00

We observe that on both datasets increasing values of σ results, as expected, in deterioration of the classification correctness (under such point of view, significant data are those obtained in the training phase). On the other hand, the violation of the relaxed constraint gets smaller and smaller, until, for too large values of σ, the results become meaningless, as w gets close to zero.
4.3. SVM_{0} vs. smoothing methods. To provide a better assessment of the proposed method we present some comparisons with results taken from [4] and [25], where a number of smoothing approaches to ℓ_{0} pseudo-norm minimization in SVM framework are described.

As for comparison with [4] we take in consideration the datasets of Group 2, which have been in fact adopted as test problems in [4]. We do not consider here the Breast Cancer (BC) dataset, since two different variants of such dataset have been used in this paper and in [4]. In the following Table 4.8 we compare training correctness and percentage of zero-value features provided by FSV algorithm from [4]
and by our $S V M_{0}$. In reporting the results of $S V M_{0}$, we have assumed equal to zero any component of w smaller than 10^{-9}.

Table 4.8
Comparison with FSV algorithm [4]

Dataset	$F S V$			$S V M_{0}$		
	Training Correct.	\% Nonzero	Time	Training Correct.	\% Nonzero	Time
PIMA	75.52	66.25	-	76.19	43.75	3.80
Heart	85.30	49.23	-	84.32	50.00	0.09
IONO	88.92	30.58	30.94	89.31	13.82	0.27
LIVER	67.83	75.00	-	66.63	52.00	0.19

The results are comparable in terms of correctness, while $S V M_{0}$ seems to produce a stronger feature reduction effect. Comparison in terms of computing time does not appear particularly significant, as for FSV the available data provided in [4] refer only to IONO dataset.

As for comparison with [25], we have considered the datasets of Table 4.9, which are both linearly separable.

Table 4.9
Description of the datasets

Datasets from [25]	m	n
Colon Cancer	62	2000
Nova	1754	16969

In the following Table 4.10 we report the detailed results obtained by $S V M_{0}$.

> TABLE 4.10
> $S V M_{0}$ Algorithm

Dataset	C	σ	Train	$\|w\|_{1}$	Time	\%Viol.	$e^{\top}(u+v)$	$\% \mathrm{ft}(0)$	$\% \mathrm{ft}(-2)$	$\% \mathrm{ft}(-4)$	$\% \mathrm{ft}(-9)$
Colon Cancer	10	40	100.00	9.29	14.42	0.00	9.00	0.25	0.45	0.45	0.45
Nova	100	31	100.00	252.88	137.07	0.00	131.00	0.64	0.77	0.77	0.77

In [25] two different formulations of the sparse minimization problem are discussed; they are based on two smooth concave approximations of the zero pseudo-norm inspired by property (2.3) and are referred to, respectively, as Formulation 1 and 2. The approach adopted is a multi-start one, with 100 runs for randomly selected starting point. The comparison is in Table 4.11, where for Formulation 1 and 2 are reported both the average and the best value of number of nonzero features. As for $S V M_{0}$, the average number of nonzero components in the tenfold cross validation procedure is, as usual, reported.

We note, however, that the approach in [25] is a global optimization one, while ours is local. This fact makes comparison difficult, mainly from point of view of computation time.

Table 4.11
Comparison with [25]

Dataset	Formulation 1		Formulation 2		$S V M_{0}$	
	\# Nonzero Feat.	\% Time	\# Nonzero Feat.	Time	\# Nonzero Feat.	Time
Colon Cancer	$13.7 / 7$	225	$9.4 / 6$	24	9	14.42
Nova	$126.7 / 105$	10448	$131.9 / 114$	1003	131	137.7

5. Conclusions. We have tackled the Feature Selection problem within SVM binary classification by using the polyhedral k-norm, in the sparse optimization context. The numerical experiments show that the approach is a promising alternative to continuous approximations of the ℓ_{0} pseudo-norm and to integer programming-based methods.

As Feature Selection is an important subject also in other areas of Machine Learning (see, e.g., [28], [7]), we believe that a possible future development of our work would be the extension of the k-norm approach to regression and clustering problems. Yet another possible research direction would be the use of kernel transformations within our model.

REFERENCES

[1] E. Amaldi, V. Kann, On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems, Theoretical Computer Science, 1998, 209, 12, pp. 237-260.
[2] P. Bertolazzi, G. Felici, P. Festa, G. Fiscon, E. Weitschek, Integer programming models for feature selection: New extensions and a randomized solution algorithm, European Journal of Operational Research, 2016, 250, 2, pp. 389-399.
[3] P.S. Bradley, O.L. Mangasarian, W.N. Street, Feature selection via mathematical programming, INFORMS Journal on Computing, 1998, 10, 2, pp. 209-217.
[4] P.S. Bradley, O.L. Mangasarian, Feature Selection via Concave Minimization and Support Vector Machines, Machine Learning Proceedings of the Fifteenth International Conference (ICML '98), J. Shavlik, editor, Morgan Kaufmann, San Francisco, California, 1998, pp. 82-90.
[5] N. Cristianini, J. Shawe-Taylor, An introduction to support vector machines and other kernel-based learning methods, 2000, Cambridge University Press.
[6] G. Di Pillo, L. Grippo, Exact penalty functions in constrained optimization, SIAM Journal on Control and Optimization, 1989, 27, 6, pp. 1333-1360.
[7] J. G. Dy, C. E. Brodley, S. Wrobel, Feature selection for unsupervised learning, Journal of Machine Learning Research, 2004, 5, pp. 845-889.
[8] G. Gasso, A. Rakotomamonjy, S. Canu, Recovering Sparse Signals With a Certain Family of Nonconvex Penalties and DC Programming, IEEE Transactions on Signal Processing, 2009, 57, 12, pp. 4686-4698.
[9] M. Gaudioso, E. Gorgone, M. Labbé, A. M. Rodríguez-Chía, Lagrangian relaxation for SVM feature selection, Computers and Operations Research 2017, 87, pp. 137-145.
[10] M. Gaudioso, G. Giallombardo, G. Miglionico, Minimizing piecewise-concave functions over polytopes, Mathematics of Operations Research, 2018, 43, 2, pp. 580597.
[11] M. Gaudioso, G. Giallombardo, G. Miglionico, A. M. Bagirov, Minimizing nonsmooth DC functions via successive DC piecewise-affine approximations, Journal of Global Optimization, 2018, 71, 1, pp.37-55.
[12] J. Gotoh, A. Takeda, K.Tono, DC formulations and algorithms for sparse optimization problems, Mathematical Programming, Ser. B, 2018, 169, 1, pp. 141-176.
[13] I. Guyon, A. Elisseeff, 2003. An introduction to variable and feature selection, Journal of Machine Learning Research, 2003, 3, pp. 11571182.
[14] T. Hastie, R. Tibshirani, M. Wainwright, Statistical learning with sparsity: the lasso and generalizations, 2015, CRC Press.
[15] A. B. Hempel, P. J. Goulart, A Novel Method for Modelling Cardinality and Rank Constraints, 53rd IEEE Conference on Decision and Control, Los Angeles, Cal., USA Dec. 15-17, 2014, pp. 4322-4327.
[16] J.-B. Hiriart-Urruty, Generalized differentiability/ duality and optimization for problems dealing with differences of convex functions, Lecture Notes in Economic and Mathematical Systems, 1986, 256, Springer Verlag, pp. 37-70.
[17] J.-B. Hiriart-Urruty, D. Ye, Sensitivity analysis of all eigevalues of a symmetric matrix, Numerische Mathematik, 1995, 70, 1, pp. 45-72.
[18] K. Joki, A.M. Bagirov, N. Karmitsa, and M.M. Mäkelä, A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes, Journal of Global Optimization, 2017, 68, pp. 501-535.
[19] H.A. Le Thi, T. Pham Dinh, The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems, Journal of Global Optimization, 2005, 133, pp. 23-46.
[20] H.A. Le Thi, H.M. Le, V.V. Nguyen, T. Pham Dinh, A DC programming approach for feature selection in support vector machines learning, Advances in Data Analysis and Classification, 2008, 2, pp. 259278.
[21] S. Maldonado, J. Pérez, R. Weber, M. Labbé, Feature selection for Support Vector Machines via Mixed Integer Linear Programming, Information Sciences, 2014, 279, pp. 163-175.
[22] O.L. Mangasarian, Nonlinear Programming, 1969, McGraw-Hill.
[23] M.L. Overton, R.S. Womersley, Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices, Mathematical Programming, 1993, 62, 1-3, pp. 321-357.
[24] M. Pilanci, M. J. Wainwright, L. El Ghaoui, Sparse learning via Boolean relaxations, Mathematical Programming, Ser. B, 2015, 151, pp. 63-87.
[25] F. Rinaldi, F. Schoen, M. Sciandrone, Concave programming for minimizing the zero-norm over polyhedral sets, Computational Optimization and Applications, 2010, 46, pp. 467486.
[26] A.S. Strekalovsky, Global optimality conditions for nonconvex optimization, Journal of Global Optimization, 1998, 12, pp. 415-434.
[27] E. Soubies, L. Blanc-Féraud, G. Aubert, A Unified View of Exact Continuous Penalties for $\ell_{2}-\ell_{0}$ Minimization, SIAM Journal on Optimization, 2017, 27, 3, pp. 2034-2060.
[28] R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society. Ser. B, 1996, pp.267-288.
[29] V. Vapnik, The nature of the statistical learning theory, 1995, Springer Verlag.
[30] L. Wang, J. Zhu, H. Zou, The doubly regularized Support Vector Machine, Statistica Sinica, 2006, 16 pp. $589-615$.
[31] G.A. Watson, Linear best approximation using a class of polyhedral norms, Numerical Algorithms, 1992, 2 pp. 321-336.
[32] J. Weston, A. Elisseeff, B. Schölkopf, M. Tipping, Use of the zero-norm with linear models and kernel methods, Journal of Machine Learning Research, 2003, 3, pp. 1439-1461.
[33] S. J. Wright, Accelerated block-cordinate relaxation for regularized optimization, SIAM Journal on Optimization, 2012, 22, 1, pp. 159-186.
[34] B. Wu, C. Ding, D. Sun, K.-C. Toh, On the Moreau-Yosida regularization of the vector k-norm related functions, SIAM Journal on Optimization, 2014, 24. 2, pp. 766-794.
[35] H. Zou, T. Hastie, Regularization and variable selection via the elastic net, Journal of the Royal Statistical Society: Ser. B, 2005, 67. pp. 301-320.

Acknowledgement. We are grateful to Francesco Rinaldi for having provided us with the datasets Colon Cancer and Nova that we have used to compare our results with those in [25].

[^0]: *Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica, Università della Calabria, 87036 Rende (CS), Italia. E-mail: gaudioso@dimes.unical.it
 ${ }^{\dagger}$ Dipartimento di Matematica e Informatica, Università di Cagliari, 09124 Cagliari, Italia. E-mail: egorgone@unica.it
 ${ }^{\ddagger}$ Institut de mathématiques, Université Paul Sabatier, 31062 Toulouse, France. E-mail: jbhu@math.univ-toulouse.fr

[^1]: ${ }^{\ddagger}$ Symbol "*" in Dataset column of Table 4.5 indicates that parameter C has been set to 2 .

