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FINDING THE POINT OF A POLYHEDRON CLOSEST TO THE
ORIGIN*

B. F. MITCHELL, V. F. DEM’YANOV AND V. N. MALOZEMOV

Abstract. An algorithm is given for finding the point of a convex polyhedron in an n-dimensional
Euclidean space which is closest to the origin. It is assumed that the convex polyhedron is defined as

the convex hull of a given finite set of points. This problem arises when one wishes to determine the
direction of steepest descent for certain minimax problems.

1. Let a finite set ofpoints H {zi}= be given in an n-dimensional Euclidean
space E,. We denote by L the convex hull of the points zi"

Obviously, L is a bounded closed convex set. We shall denote by z* the point of
L which is closest to the origin

(z*, z*) min (z, z).
eL

Our goal is to describe a new method of successive approximations for find-
ing the point z*.. It is not difficult to show that the point z* exists and is unique. Moreover,
the following inequality holds for any z e L (see, e.g., [1])"

(1) (z, z*) __> (z*, z*).

We set

Since

6(z) (z, z) rain (z, z).
i[l:s]

(2) (v, z) _>_ min (zi, z)
ie[l:s]

for any v, z e L, we have 6(z) >= 0 if z L.
The following lemma also follows immediately from (1) and (2).
LEMMa 1. The inequality

(3) []z z*[I -< min {x/-, [[z[[}
holds for any z L.

COROLLARY 1. If a sequence of points /)k L, k 0, 1, 2,..., is such that

((Uk) O, then
k--*

/)k Z*.
k--

Originally published in Vestnik Leningrad Univ., 19 (1971), pp. 38-45. Submitted December 30,
1969. This translation into English has been prepared by K. Makowski.
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20 B.F. MITCHELL, V. F. DEM’YANOV AND V. N. MALOZEMOV

COROLLARY 2. If a sequence of points /)k ff L, k 0, 1, 2,..., is such that
O, thenVk+ <= [IV and if there exists a subsequence {Vkj} for which 6(Vkj

j-o
V Z*.

k-

The following theorem holds.
THEOREM 1. For a point 5 L to be the point ofL closest to the origin, it is neces-

sary and sufficient that 6(5) O.
Proof The sufficiency follows from (3). The necessity. Let 5 z*. Then, first,

6(z*) >= O. On the other hand, we have by virtue of (1), (zi, z*) >_ (z*, z*) for any
e I1 :s], because z H c L. Hence, miniE:](zi, z*) >__ (z*, z*) or, which is the

same, 6(z*) <__ O. Therefore, 6(z*) 0. The theorem has been proved.
3. We denote by E the set of vectors A of the form

We set

(4)
z(A) oizi

i=1

A(A) max (zi, z(A)) min (zi, z(A)).
{ilai O} i[ :s]

We denote by i’ i’(A) a subscript at which the maximum in the right-hand side
of (4) is attained (if there are several such subscripts, then we take any one of
them). Thus, % > 0 and (zi,, z(A)) max/il,,> o (zi, z(A)).

LEMMA 2. The inequalities 0i,A(A) =< 6(v) <_ A(A) holdfor any vector v z(A),
AGE.

Proof We note that

(v, v) oi(zi, z(A)) <= max (zi, z(A)).
i= {ilai O}

Hence, the inequality 6(v) < A(A) follows. We denote by zi,,, i" i"(A), the point
of the set H for which

In this case

(zi,,, z(A)) min (zi, z(A)).
i[ :s]

We set {1, s} G ’", where

A(A) (zi, zi,,

i",i for =/= t,

i 0 for i’,

, + %, for i".

Obviously,

(6) z(A)-- z(A) At- (Zi,(Zi,,- Zi,

Since z(A) L, we have by virtue of (2)

(7) (z(A), z(A)) >= min (z, z(A)).
i[l:s]D
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FINDING THE POINT OF A POLYHEDRON 21

Taking into account (7), (6), and (5), we obtain 3(z(A)) _>_ oi,A(A). The lemma has
been proved.

THEOREM 2. For a point v z(A), A e E, to be the point of L closest to the
origin, it is necessary and sufficient that A(A) 0.

The proof follows in an obvious way from Lemma 2 and Theorem 1.

4. We shall now describe the method of successive approximations for find-
ing the point z*. We choose a vector Ao e E in an arbitrary way, and we set

Vo z(Ao). Assume that the kth approximation vk L’vk z(A), A
-(), )) -," has already been found. We describe the construction of

Uk+
First of all, we find vectors zi and zig of H such that

(zi,, vk) max

(zi,, v) min (zi, z(A)).
ie[ :s]

In this case,

(8) A de----- A(A) (zi Zig, v).

We consider the interval

(9) bk(t) v + tOi (Zig O<t<l.

Let t with 0 __< t =< 1 bedetermined by the relation

(v(tk), v(t)) min (v(t), v(t)).
O_<t<l

Zi,, k/l
k

!
/

FIG.

We set vk+l v(t) (see Fig. 1). It is not difficult to verify that Vk+ z(A+ 1),
where

Ak+l (O(lk+ 1) k+ 1))(D
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22 B.F. MITCHELL, V. F. DEM’YANOV AND V. N. MALOZEMOV

) for/ i,i,

(zlk+ 1) al,kk) tkIk,) for i= i,,

Ik) tkl! for/

For the sake of simplicity, we shall subsequently make use of the following
notation" k , Zk’ Zi, k

Continuing the process described, we obtain the sequence of points k L,
k 0, 1, 2, ..., with

(10)

LEMMA 3. The following limit relation holds"

(11) lira Ak 0.
k

Proo First, we note that by virtue of (8) and (9),
2 )2(12) (Vk(t), Vk(t)) (k, k)- 2tkAk (klk Zk

Assume that the assertion ofthe lemma is false. Then there exists a subsequence
(k for which Ak e 0. By virtue of (12) we have, for all 0, 1] and
uniformly with respect to k,

(k(t), k(t)) (k, k)- 2re td2,

where d max,p:l [ -p 0. Hence, it follows that the following in-
equality holds for to min (e/d, 1 (obviously, 0 to 1)"

Taking into account that, by definition, (Vk , Vk ) (Vk(to), k(to)), we obtain

uniformly with respect to k.
The number of such reductions in the monotonically nonincreasing sequence

(k, k) is infinite, which contradicts the fact that all the (Vk, Vk) are nonnegative.
The lemma has been proved.

LEMMA 4. The limit relation

(13) lim A 0
k--*

holds.
Proof Assume the contrary" limk_ Ak A’ > 0. Then we have

(14) Ak > A’/2

for numbers k _> ko sufficiently large. Taking into account (11), we conclude that

(15)
k-.’ 0.

We also note that, by virtue of(12) and (14),

(16) vk/ < vkD
ow

nl
oa

de
d 

10
/0

3/
12

 to
 1

52
.3

.1
02

.2
42

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



FINDING THE POINT OF A POLYHEDRON 23

for k => k0. We denote by tk the point at which (Vk(t), Vk(t)) attains its global mini-
mum. Obviously (see (12)),

Ak[k 2’ z
By virtue of (14) and (15), [k-_, . Hence, it follows that for numbers k => k

=> ko sufficiently large, the minimum of (Vk(t), Vk(t)) on the interval 0 =< < is
attained for tk 1. Therefore, for these k,

(17) Vk+ Vk + ’(k- Z’).

However, the sequence of points Vkl, Vkl +1, Vkl +2, "’", which are connected by
relation (17), can contain only a finite number of mutually distinct elements,
which contradicts (16). The lemma has been proved.

THEOREM 3. The sequence {Vk} constructed above converges to the point z*.
The proof follows from Lemmas 4 and 2 and from Corollary 2 to Lemma

in an obvious way.
Remark. If it turns out that, for some k, Ak 0, i.e., that Vk Z*, then Vk+

Z* for all j 1, 2, This fact follows from (12).
5. We note certain peculiarities of the method of successive approximations

described in the preceding section. We introduce the hyperplane

6 {zl(z, z*) (z*, z*)}.
TnZORZM 4. If z* :/: O, i.e., if the origin does not belong to L, then, beginning

with some number, vl, G.
Proof We note that, by virtue of Theorem 1,

min (zi, z*) (z*, z*).
i[l:s]

We set

/1 {z,t-/l,,z*)= z*,*)} t =/-/\/-/ {z,/-/I,,z*) > I*,z*)}.
If H2 is an empty set, then vk G for all k 0, 1, 2, Therefore, we henceforth
assume that H2 is a nonempty set. We introduce the notation

r min (zi, z*) (z*, z*) > O.
zi-tt2

Since v z* we have

max I(zi, v)- (zi, z*)l < r/4
i[l:s]

for numbers k => ko sufficiently large. It is not difficult to show that the following
relations hold for the same numbers k > k0

(zi, v) <= (z*, z*) + z/4

(z, v) >__ (z*, z*) + if ziGH2

This remark is due to M. S. Al’tmark.D
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24 B.F. MITCHELL, V. F. DEM’YANOV AND V. N. MALOZEMOV

Hence, it follows that

(18) min (zi, Vk) min (zi,
i[l:s] ziHx

Further, if a point z H2 enters the representation of vk, k >= ko, with a nonzero
coefficient, then

(19) Ak _>- r/2,

where

(20) vk+x < vll,

Let

Z <%+ Z <%.
{ilziH a} {ilziH2}

By virtue of the definitions of H1 and r,

z*)= e d
{ilzieHz} {ilzieH2}

Since the left-hand side of this inequality tends to zero as k ,
0E k)

k
{ilziH2}

We choose a large kl k0 such that the following inequality holds for k k"

(21) Z Ik) <
{ilziH2} 2d2’

where d max,n.zz z- zj > 0. We denote by t the point at which
(v(t), v(t)) attains its global minimum. If z H2 enters the representation of v,
k => k, with a nonzero coefficient, then we obtain by virtue of (19) and (21)

Hence, it follows that

(22)

m q7
>

0Ik)) d2
>_ 1.2 2 (Z{ilzielt2}Ok k- Zk

v+ v + ,(- z0.

We assume that points z H2 enter the representations of all vectors

(23) Vkl Vkx + 1, l)kl + 2,

with nonzero coefficients. By virtue of (22), sequence (23) contains only a finite
number of mutually distinct elements. However, this contradicts (20). Therefore,
there exists a point v, >= kl, which has the following representation"

vk L -{k)z_" 0{) > 0 Z 4’ 1Oi i,

By virtue of (18), all the vk with k >= k have similar representations. In particu-
lar, we have by definition of H for k => k, that (vk, z*) (z*, z*), i.e., v 6 G.
The theorem has been proved.D
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FINDING THE POINT OF A POLYHEDRON 25

THEOREM 5. The limit relation

lim A 0
ko

holds.
Proof. If z* 0, then the assertion of the theorem follows from the definition

of Ak and from the fact that /)kll
k_

0. Therefore, we assume that z* 0. By
virtue of Theorem 4, we have for k >__ k,

Ak_--< max (zi, vk) min (zi, vk).
{ilzieH1} {ilzieH}

According to the definition of H,, the right-hand side of this inequality tends to
zero as k co. Therefore, A T0 also, since A => 0. The theorem has been
proved,

k-

6. We set

k--" Ak/ Vkl 2 k 0 1 2...

If l)k O, then we set by definition A .
THEOREM 6. For the origin to belong to the set L, it is necessary and sufficient

that the following inequality hold for all k 0, 1, 2,...

(24) Ak _>-- 1.

Proo The necessity. We have z* 0. Taking into account that vk L, we
obtain on the basis of Lemmas 1 and 2

Ak 6(Vk) > 1Ak IlVkll2 liVkll2
The sufficiency. Assume that z*# 0. Then [k <= Ak/llz* 2. By virtue of

Theorem 5, we obtain Ak 0, which contradicts (24). The theorem has been
proved.

Thus, if z* 0, then tlVkl k’ 0 and, for all k 0, 1, 2, ..., the inequality
Ak > 1 holds. If z* 0, then Ilvkll > [Iz*ll and Ak 0.

If the inequality A < 1 holds for some k, then, by virtue of Theorem 6, the
origin does not belong to the set L. Moreover, it is not difficult to prove that, in
this case, the hyperplane (Vk, Z) (Vk, k) 0 strictly separates the origin from L.

7. We remind the reader that U Z(Ak) Ak e E. We set I {ilk) > 0} and
introduce the set

Bk= (z= zi + iIk i(Z-- Z)l(--’)}
iio

Here, io is an arbitrary subscript of Ik. We denote by k the vector of Bk with the
smallest norm" k[I minzB z We note that the point keBk is unique,
although its representation in the form

Zio + i(zi- Zio)
ielk
iio

may not be unique.D
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26 B.F. MITCHELL, V. F. DEM’YANOV AND V. N. MALOZEMOV

It is not difficult to show that the numbers (l constitute the solution of the
following linear system"

(25) Zio -It- Z Oi(Zi- Z/o)’ Zj- Zio O, j e I, j o.
ielk
:/:

THEOREM 7. There exists an infinite subsequence of vectors {kj} such that
Vkj~ Z* for all

Proof We shall assume that z* - 0 (if z* 0, then the proof is only simplified).
First, we separate a subsequence {Vk} such that

(i) i’(kJ) , [l’s], in this case,
j-o

,z* z;l)kJ J""

(ii) Vk G (see Theorem 4).
We set I* {ilz’ > 0}. Obviously, we have for kj sufficiently large

(26) I* Ik.
Henceforth, we consider only such kj. We denote by L* the convex hull of the
points zi, e I*. Obviously, z*e L*. We denote by Lkj the convex hull of the
points zi, lk. By virtue of (ii), (26), and of the definition of the set Bk we have

L* c Lk c Bk G.

Further, z* minz z _-< minznk z. Since z* eL*, z* Bk. Therefore,
[z* min:Bk. I[zll.

Taking into account that the point of Bk with the smallest norm is unique,
we obtain k Z*. The theorem has been proved.

On the basis of this theorem, one can assert that finding z* reduces to solving
a finite number of systems of linear equations of form (25). We note that it is
purposeful to solve these systems only for the k for which either IlVk or Ak is
sufficiently small.

Regarding other methods of finding the point of a polyhedron which is closest
to the origin, see [2]-[4].
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