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FINDING THE POINT OF A POLYHEDRON CLOSEST TO THE
ORIGIN*

B. F. MITCHELL, V. F. DEM’YANOV anp V. N. MALOZEMOV

Abstract. An algorithm is given for finding the point of a convex polyhedron in an n-dimensional
Euclidean space which is closest to the origin. It is assumed that the convex polyhedron is defined as
the convex hull of a given finite set of points. This problem arises when one wishes to determine the
direction of steepest descent for certain minimax problems.

1. Letafiniteset of points H = {z,;};_; be given in an n-dimensional Euclidean
space E,. We denote by L the convex hull of the points z;:

s S
L= {z: Y oz 20, ), o = 1}.
i=1 i=1

Obviously, L is a bounded closed convex set. We shall denote by z* the point of
L which is closest to the origin

(z*, z¥) = min (z, z).
zelL
Our goal is to describe a new method of successive approximations for find-
ing the point z*.

2. Itis not difficult to show that the point z* exists and is unique. Moreover,
the following inequality holds for any z € L (see, e.g., [1]):

(1 (z,2%) = (2%, 2%).
We set

§(z) = (z,z) — min (z;, z).
ie[1l:s]

Since

(2) (v,2) = min (z;, 2)
ie[1:s]

for any v, ze L, we have d(z) = 0 if ze L.
The following lemma also follows immediately from (1) and (2).
LEMMA 1. The inequality

3) Iz — z*|| < min {{/d(2), l|z||}
holds for any z € L.
COROLLARY 1. If a sequence of points vieL, k=0,1,2,---, is such that

6(vk)m 0, then
v, — z*.

k—

* Originally published in Vestnik Leningrad Univ., 19 (1971), pp. 38-45. Submitted December 30,
1969. This translation into English has been prepared by K. Makowski.
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COROLLARY 2. If a sequence of points v,eL, k =0,1,2,---, is such that
vk 1| < llvgll, and if there exists a subsequence {vkj} Jfor which (v ) —— 0, then
J 0

v, — z*,
k= o0

The following theorem holds.

THEOREM 1. For a point zZ € L to be the point of L closest to the origin, it is neces-
sary and sufficient that 6(z) = 0.

Proof. The sufficiency follows from (3). The necessity. Let z = z*. Then, first,
d(z*) = 0. On the other hand, we have by virtue of (1), (z;, z¥) = (z*, z*) for any
ie[1:s], because z;€ H — L. Hence, min,.4(z;, z*) 2 (z*, z*) or, which is the
same, d(z*) < 0. Therefore, 8(z*) = 0. The theorem has been proved.

3. We denote by Z the set of vectors 4 of the form

A= (g, o,0), 020, Y a=1.
i=1

v

We set

2A4) = ) oz
i=1

(4)
A(4) = max (z;,z(4)) — min (z;, z(A)).
{i|a; > O} ie[1:s]

We denote by i’ = i'(A) a subscript at which the maximum in the right-hand side
of (4) is attained (if there are several such subscripts, then we take any one of
them). Thus, «;; > 0 and (z;, z(4)) = max,,> o) (2;, 2(A4)).

LEMMA 2. The inequalities o, A(A) £ d(v) < A(A) hold for any vector v = z(A),
Aek.

Proof. We note that

s

(v,0) = ) ofz;, 2(A4) < max (2, 2(A)).

i=1
Hence, the inequality d(v) < A(A4) follows. We denote by z,., i” = i"(A), the point
of the set H for which
(z;, 2(A)) = min (z;, z(A)).
ie[1:s]
In this case
(5 A(A) = (zp — 2, 2(A)).
We set A = {&,, -+, & € &, where
o; fori#i,i",
o = 0 fori=1"1,

1

oy + o fori=i".
Obviously,
(6) 2(A) = 2A) + alzi — zp).
Since z(A4) € L, we have by virtue of (2)
(7 (2(4), 2(A4)) Z lfslllllrsll (2, 2(A)).
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Taking into account (7), (6), and (5), we obtain 6(z(4)) = o,A(A). The lemma has
been proved.

THEOREM 2. For a point v = z(A), A€ E, to be the point of L closest to the
origin, it is necessary and sufficient that A(4) = 0.

The proof follows in an obvious way from Lemma 2 and Theorem 1.

4. We shall now describe the method of successive approximations for find-
ing the point z*. We choose a vector A, €E in an arbitrary way, and we set
vo = z(Ay). Assume that the kth approximation v, €L:v, = z(A,), A,
= (o, -+, a®) e E, has already been found. We describe the construction of

Ut 1
First of all, we find vectors z; and z;; of H such that

(Zi,;, ) = ~max (z;, 2(A}),
{ila{) > 0}

(Zii;’ vy) = min (z;, 2(4y)).
ie[1:s]
In this case,

def

®) Ay = AMAY) = (2, — 2y, V0)-
We consider the interval

Let ¢, with 0 < ¢, < 1 be determined by the relation

(Ot vlty) = min (0(t), vy(t)).

FiG. 1

We set v, ; = v,(t,) (see Fig. 1). It is not difficult to verify that v, ; = z(4,4,),
where

k+1 k+1 —-
Ak+1=(a(1 ),"',“g ))G:"
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o for i # iy, iy,
otV = Lal) — ol fori =i,
o) + ol for i =iy
For the sake of simplicity, we shall subsequently make use of the following
notation: o), = cxfl;’, Zh = Zy, 2 = Zyg.

Continuing the process described, we obtain the sequence of points v, € L,
k=012, with

(10) o 1 = llogll-
LEmMA 3. The following limit relation holds

11) lim oA, = 0.

k— oo
Proof. First, we note that by virtue of (8) and (9),
(12) (0(8), (1) = (v, 0)) — 2t0A; + 3 (o4l|Z, — zi]))?

Assume that the assertion of the lemma is false. Then there exists a subsequence
{vkj} for which o A, = & > 0. By virtue of (12) we have, for all t€[0, 1] and
uniformly with respect to k;,

(vkj(t)’ Ukj(t)) é (Ukj’ vkj) — 2t + tzdzo
where d = max; ;.4 1z, — z,| > 0. Hence, it follows that the following in-
equality holds for t, = min {¢/d*, 1} (obviously, 0 < t, < 1):
(v (to)s v, (t0)) = (v, Ui ) — ok
Taking into account that, by definition, (v, 1 1, U, + 1) = (vx,(£0), v, (£o)), We obtain
(Vkj 4 15 Uy a 1) = (0,5 0) — Lo

uniformly with respect to k;.

The number of such reductions in the monotonically nonincreasing sequence
(v, v,) 1s infinite, which contradicts the fact that all the (v,, v,) are nonnegative.
The lemma has been proved.

LEMMA 4. The limit relation

(13) 1im A, = 0
k—
holds.
Proof. Assume the contrary : lim, , , A, = A" > 0. Then we have
(14) A= N2
for numbers k > k, sufficiently large. Taking into account (11), we conclude that
(15) A -2 0.

We also note that, by virtue of (12) and (14),
(16) Ve 1l < llogl
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for k = k,. We denote by i, the point at which (v,(t), v,(t)) attains its global mini-
mum. Obviously (see (12)),

e A
%llZe — zil?

By virtue of (14) and (195), {, oo, Hence, it follows that for numbers k = k,
= k, sufficiently large, the minimum of (v,(t), v,(t)) on the interval 0 <t < 1 is
attained for t, = 1. Therefore, for these k,

(17) Vg1 = U + 0lZ — zp).

However, the sequence of points v, , v, 4,0, +2, -+, Which are connected by
relation (17), can contain only a finite number of mutually distinct elements,’
which contradicts (16). The lemma has been proved.

THEOREM 3. The sequence {v,} constructed above converges to the point z*.

The proof follows from Lemmas 4 and 2 and from Corollary 2 to Lemma 1
in an obvious way.

Remark. If it turns out that, for some k, A, = 0, i.e., that v, = z*, then v,
= z¥for all j = 1,2, --- . This fact follows from (12).

5. We note certain peculiarities of the method of successive approximations
described in the preceding section. We introduce the hyperplane

G = {Z(z, z*) = (z*, z%)}.

THEOREM 4. If z* # 0, i.e., if the origin does not belong to L, then, beginning
with some number, v, € G.
Proof. We note that, by virtue of Theorem 1,

min (z;, z*) = (z*, z%).
ie[1:s]

We set
H, = {z;€e H|(z;, z*) = (z*,z%)}; H, = H\H, = {z;€ H|(z;, z¥) > (z*, z*)}.

If H, is an empty set, then v, € G for all k = 0, 1, 2, - - - . Therefore, we henceforth
assume that H, is a nonempty set. We introduce the notation

T = min (z;,z*) — (z*,z%) > 0.
zieHy

Since v, —>Z%, We have
k
k— o0

max |(z;, v) — (z;, z%)| < ©/4
ie[1:s]

for numbers k > k,, sufficiently large. It is not difficult to show that the following
relations hold for the same numbers k = k,:

(zi,v) S (2%, 2%) + t/4  ifz;eH,y;

(z;,v) = (2%, 2%) + 314 ifz;e H,.

! This remark is due to M. S. Al’'tmark.
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Hence, it follows that

(18) min (z;, v,) = min (z;, vy).
ie[1:s] zieHy

Further, if a point z; € H, enters the representation of v, k = k,, with a nonzero
coeflicient, then

(19) Ay 2 7/2,
where

(20) oIl < llogll-
Let

— (k) (k
=3y ¥z + Y alz.
{ilzieH 1} {ilzieH2}

By virtue of the definitions of H, and T,

(v —z*,2% = Y oz, —z* 2921 ) ol
{ilzicH 2} {ilzieH2}

Since the left-hand side of this inequality tends to zero as k — oo,

T ah—0.

k—
{ilzieH2}
We choose a large k; = kq such that the following inequality holds for k = k:
e T <

= 53 2°
{ilzieH2} 2d

where d = max, .y, ;en, 12; — z;ll > 0. We denote by i, the point at which
(v(t), v,(t)) attains its global minimum. If z; € H, enters the representation of v,
k = k,, with a nonzero coefficient, then we obtain by virtue of (19) and (21)

A, T
5 22 ®
oz — zill 2(Z(i|zgeliz) o) d

i, = = 1.

Hence, it follows that

(22) Uk1 = U+ 0lZ — 2i).
We assume that points z; € H, enter the representations of all vectors

(23) Uy U+ 15 U425 700

with nonzero coefficients. By virtue of (22), sequence (23) contains only a finite
number of mutually distinct elements. However, this contradicts (20). Therefore,
there exists a point vg, k = k,, which has the following representation :
=3 oz; =0, Y o = 1.
{i|zieH 1) {ilzieH1}

By virtue of (18), all the v, with k = k have similar representations. In particu-
lar, we have by definition of H,, for k = k, that (v, z¥) = (z*, z%), ie., v,€G.
The theorem has been proved.
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THEOREM 5. The limit relation

limA, =0
k— o0
holds.
Proof. If z* = 0, then the assertion of the theorem follows from the definition
of A, and from the fact that ||v,| KO. Therefore, we assume that z* # 0. By
virtue of Theorem 4, we have for k = k,

Ay = max (z;,v) — min (z;,v).
{ilzieH 1} {ilzieH 1}

According to the definition of H, the right-hand side of this inequality tends to

zero as k — oo. Therefore, Akm 0 also, since A, = 0. The theorem has been
proved.

6. We set
A = Adllvl?, k=0,1,2,---.

If v, = 0, then we set by definition A, = cc.
THEOREM 6. For the origin to belong to the set L, it is necessary and sufficient
that the following inequality hold for all k = 0,1,2, --- :

(24) A= 1.

Proof. The necessity. We have z* = 0. Taking into account that v, € L, we
obtain on the basis of Lemmas 1 and 2

Zk = “A*k'z 2 6(vk)2 =
loel* = lwell

The sufficiency. Assume that z* # 0. Then A, < A/||z*|%. By virtue of
Theorem 5, we obtain Akmo, which contradicts (24). The theorem has been
proved.

Thus, if z* = 0, then ||v,| -;:0—:0 and, for all k =0, 1,2, ---, the inequality
A, = 1holds. If z* # 0, then |[v,| = ||z*| and Z,,To.

If the inequality Zk < 1 holds for some k, then, by virtue of Theorem 6, the
origin does not belong to the set L. Moreover, it is not difficult to prove that, in
this case, the hyperplane (v,, z) — (v, z,) = O strictly separates the origin from L.

7. We remind the reader that v, = z(4,), A, € E. We set I, = {ij«{» > 0} and
introduce the set

B, = {z =z, + Y ofz; — z; oy €(— o0, oo)}.

ielk
i#io

Here, i, is an arbitrary subscript of I,. We denote by 7, the vector of B, with the
smallest norm: [|§,]| = min,g, [z]|. We note that the point #, € B, is unique,
although its representation in the form
O = 2ip + ), 0z — 2;)
iely
. i#io
may not be unique.
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It is not difficult to show that the numbers &, constitute the solution of the
following linear system:

(25 Zig+ 2 ofz — ),z — zi, | =0, jel, j# i
i
THEOREM 7. There exists an infinite subsequence of vectors {T)kj} such that
Uy, = z* for all k;.
Proof. We shall assume that z* # 0 (if z* = 0, then the proof is only simplified).
First, we separate a subsequence {v, } such that

(i) of) —— X, ie[1:5], in this case,
J—©

s i Y otz

© i=1

(i1) vy, € G (see Theorem 4).

We set I* = {ilo} > 0}. Obviously, we have for k; sufficiently large

(26) e,

Henceforth, we consider only such k;. We denote by L* the convex hull of the
points z;, i€I* Obviously, z*e L*. We denote by L, the convex hull of the
points z;, i € I; . By virtue of (ii), (26), and of the definition of the set By, we have

L*< L, < By, = G.

Further, ||z¥|| = min, |z] £ minzeBkj lzll. Since z*eL*, z*€ B, . Therefore,
|21 = min.p,, |21.

Taking into account that the point of By, with the smallest norm is unique,
we obtain 7, = z*. The theorem has been proved.

On the basis of this theorem, one can assert that finding z* reduces to solving
a finite number of systems of linear equations of form (25). We note that it is
purposeful to solve these systems only for the k for which either ||v,| or A, is
sufficiently small.

Regarding other methods of finding the point of a polyhedron which is closest
to the origin, see [2]-[4].
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