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Abstract

Support Vector Machine training implies solving a quadratic programming problem, which

is a computationally quite expensive task. For this reason, not only general nonlinear

optimization techniques are employed, but also algorithms specially designed for SVMs.

Among these, we centre our attention in two different approaches for solving the SVM

duals: decomposition and geometrical methods. Although they have been traditionally

considered as different approaches, we show theoretically and experimentally that there is

a strong connection among two of the most widely used decomposition methods (SMO and

SVM-Light) and a purely geometrical algorithm (MDM). This connection implies that it

is possible to combine reasonings from both perspectives in order to gain deeper insights

in the search of a more efficient algorithm for training SVMs.
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Chapter 1

Introduction

Support Vector Machines (SVMs) were introduced in [1] and nowadays constitute one of

the most prominent paradigms used for solving pattern recognition problems. Among

the advantages they offer compared with other approaches, the following are worth men-

tioning: 1) unique (global) solution, 2) good generalization properties based on struc-

tural risk minimization, 3) a common ground for both classification/regression and linearly

separable/non-linearly separable tasks, 4) a common ground as well to obtain both lin-

ear/nonlinear solutions.

Concentrating our attention on classification tasks, the non-linearly separable case is

addressed by introducing slack variables in the primal problem, whereas they are not present

in the linearly separable one. These two cases are known in the literature as soft-margin

and hard-margin classification, respectively [2]. The aim is to find the best separating

hyperplane between the two classes of training samples, where ”best” is to be understood

as the one with a maximal margin, that is, the one further from the samples (patterns). In

the non-separable case, however, there will not be any properly separating hyperplane, so

slack variables are introduced to allow for classification errors. The best hyperplane is then

considered as the one that provides a best balance between distance from the patterns to

it and subsequent classification errors using this plane as a decision boundary.

As most real-life problems will not be linearly separable, the most straightforward option

is to make always use of the soft-margin formulation. Nevertheless, there is a more powerful

possibility known as the ”kernel trick”. Simply speaking, this option consists of mapping

the patterns to a high dimensional feature space (with more dimensions as the original one,

perhaps even infinite) hoping that they will be linearly separable after the mapping. Then

we can solve the problem as if it were a hard-margin one obtaining thus in the original space

not a hyperplane, but a hypersurface. This is possible since the original space formulation

of SVMs only involves scalar products among the patterns; it can be shown that if we

1



Chapter 1. Introduction 2

substitute those scalar products for a kernel function that satisfies Mercer’s conditions [3]

we will be implicitly mapping the patterns in that way.

1.1 Motivation

Despite the advantages mentioned in the previous section, SVMs have a remarkable draw-

back in the fact that they imply solving a large constrained quadratic programming (QP)

problem, its size making often standard solvers impractical as memory requirements are

quadratic in the number of patterns. This has given rise to a great deal of SVM specific

training algorithms, which nearly always do not solve the original SVM problem (known

as the primal), but an equivalent formulation in the dual space (dual problem), where the

optimal Lagrangian multipliers are found (cf. §2). As a result, the solution hyperplane can

be expressed as a linear combination of the patterns associated with non-zero multipliers

(support vectors).

The big picture is that there are two main classes of training algorithms (see §3):

• Decomposition methods. The idea here is not to solve the whole dual problem, but

iteratively select a subset of the Lagrangian multipliers and optimize over that subset

fixing temporarily the values of the unselected multipliers.

• Geometry-based ones, which exploit the geometrical interpretation of SVMs: hard-

margin classification (and also soft-margin squared penalty) can be viewed as comput-

ing the closest points in the convex hulls of the patterns from both classes, whereas

soft-margin linear penalty classification corresponds to doing the same on reduced

convex hulls.

Unfortunately, these two approaches to SVM training have been traditionally considered

separately, only related in the final aim they pursue, which is solving the QP problem. The

main motivation for this work is an observation we came up with while revising the state-

of-the-art literature for both trends. Specifically, we realised that a geometrical method

called MDM (presented in [4] and applied to SVM training in [5]) had a very similar scheme

to the one of the SMO [6] algorithm, which has been, and still is, one of the most popular

decomposition methods. This is a very interesting fact, since it implies that decomposition

and geometrical methods sometimes share common ideas. Therefore, some decomposition

methods can hopefully be improved with geometrical reasonings, and vice versa.
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1.2 Objectives

The basic objectives of this work are thus the following:

• Implement the MDM algorithm following the lines of [4] and [5].

• Characterize theoretically the relationship between MDM and SMO.

• Confirm experimentally this relationship.

• Explore whether this relationship can be extended to other decomposition and/or

geometrical methods.

Therefore, the work is mostly theoretical and the experiments are performed just in

order to confirm or refute the formal derivations. It will be seen throughout the different

chapters that these four objectives have been covered (see the structure in §1.4). The fourth

one has been covered with another decomposition method called SVM-Light (see §3).

1.3 Contributions

The theoretical (cf. §4) and experimental (cf. §5) results we have achieved prove the

following:

• If MDM and SMO choose the same patterns for updating, their updates are identical.

• The heuristics originally used in SMO by Platt are unnecessarily complex for what

they are implicitly looking for, that is, finding the couple of patterns that violate the

most the optimality conditions.

• MDM is designed to look directly for that couple of patterns (in the hull formulation).

• If the heuristics of SMO are simplified to look directly for that couple, and SMO is

adapted to solve the problem covered by MDM (this implies that both patterns must

belong to the same class), then both methods become the same algorithm.

• Finding the most violating couple gives the direction of steepest descent (among

the directions expressed by two patterns), if we take a first-order approximation of

the dual function. Thus, both algorithms can be considered to choose their update

directions with a feasible direction strategy.

• SMO is a particular case of SVM-Light, since this last method uses the a feasible

direction method to find the direction of steepest descent.
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Some of these contributions have already been covered in the literature. For instance,

in [7] a modification of SMO is proposed to look for the most violating couple (this is the

one we use for our derivations). Besides, we have been given feedback -after the time of

this writing- that the relationship between SMO and SVM-Light had been established in

[8], but also that their relationship with MDM apparently has not been established so far.

Therefore, the work has a novel component indeed.

1.4 Structure

The structure of this work consists of six chapters, whose organization and topics are as

follows:

• Chapter 1: Introduction. The current chapter; it presents a general introduction to

support vector machines, as well as the motivation, objectives and contributions of

the work.

• Chapter 2: Support Vector Classification. Here the different formulations for support

vector machines are presented: hard and soft-margin, linear and nonlinear, and primal

and dual. The geometrical reformulation of the duals is also discussed.

• Chapter 3: State-of-the-art in Support Vector Machine Training. This chapter ex-

plains the distinction between decomposition and geometrical methods. In the de-

composition group, the SMO and SVM-Light algorithms are analyzed, and the same

is done for the MDM algorithm in the geometrical one.

• Chapter 4: CH-MDM and its Relationship with Decomposition Methods. Here is this

work’s theoretical core. First, an adaptation of MDM for the problem with two hulls

is presented. Afterwards, this algorithm is interpreted as a decomposition method

and put into relationship with SMO. Finally, it is interpreted as a feasible direction

method and put into relationship with SVM-Light.

• Chapter 5: Experimental Results. Related to the previous chapter, here the deriva-

tions in it are experimentally shown to be true. Basically, the relationships SMO-

MDM and SMO-SVM-Light are checked. Besides, it presents a comparison of soft-

margin SVMs with linear and quadratic penalties.

• Chapter 6: Discussion and Additional Work. In this final chapter, some consequences

of the theoretical and experimental results obtained in chapters 4 and 5 are discussed.

Besides, the chapter ends with an enumeration of the different articles and papers



Chapter 1. Introduction 5

that have been written throughout the development of this work, as well as some

pointers to ideas that will be considered for future research.
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Chapter 2

Support Vector Classification

2.1 Hard-margin Case

The primal and dual QP problems for the hard-margin SVM are respectively as follows [1]:

minw,b
1
2‖w‖

2

s.t. yi (w · xi + b) ≥ 1 ∀i, (2.1.1)

minα W (α) = −
∑N

i=1 αi + 1
2

∑N
i=1

∑N
j=1 αiαjyiyjxi · xj

s.t. αi ≥ 0 ∀i,
∑N

i=1 αiyi = 0. (2.1.2)

The KKT conditions can be summarized in the following way [9]:

w∗ =
∑

i∈SV α
∗
i yixi, (2.1.3)

yi (w∗ · xi + b∗) = 1 ∀i ∈ SV, (2.1.4)

yi (w∗ · xi + b∗) ≥ 1 ∀i ∈ NSV, (2.1.5)

where SV denotes the set of indices belonging to support vectors, i.e. patterns with α∗i > 0,

and NSV the analogous set for non-support vectors, i.e. patterns with α∗i = 0.

Because of optimality theory, the fulfilment of the KKT conditions and of the dual con-

straints is a necessary and sufficient condition for the point to be the dual global minimum

[9]. This is valid for the remaining SVM formulations in the present chapter.

7
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2.2 Kernel Algorithms for Support Vector Machines

Observe that in (2.1.2) the only operations between patterns are inner products. Besides,

because of the KKT condition (2.1.3) the solution of (2.1.1) will be a classifier (w∗, b∗) that

will classify a pattern xj by computing the quantity w∗ · xj + b∗ =
∑

i∈SV α
∗
i yixi · xj + b∗,

which again only involves inner products between patterns.

At this point a useful result in [3] comes at hand, known as Mercer’s theorem. Basically,

it states that if a certain kernel function k (xi,xj) fulfils some properties such as positive

definiteness, then k (xi,xj) = φ (xi) · φ (xj), where φ is a mapping from the input space to

a higher dimensional one (perhaps even infinite) called the feature space.

In this way, by making use of a kernel function in (2.1.1) or (2.1.2) each time we need

to calculate an inner product, we are effectively finding a hard-margin SVM in the feature

space, which will become a non-linear decision boundary in the input space, being able

thus to deal with inseparable classes in a very straightforward way.

Besides, if a certain algorithm used to solve either (2.1.1) or (2.1.2) is compelled to use

inner products as the only operation between patterns, it is clear that it would be implicitly

working in the feature space, yielding the aforementioned SVM.

In order to do this, two of the most popular kernel functions are the Gaussian and the

polynomial ones, given respectively by the following formulæ:

k (xi,xj) = e−
‖xi−xj‖

2

2σ2 , (2.2.1)

k (xi,xj) = (1 + xi · xj)
p . (2.2.2)

2.3 Soft-margin with Linear Penalties Case

However, there is no guarantee that by making use of a kernel function (2.1.1) will be

feasible if the classes are not linearly separable. In what is known as the soft-margin 1-

SVM, slack variables ξi are introduced in order to allow for classification errors, so now the

classes need not be linearly separable as in the hard-margin case. The primal and dual QP

problems analogous to (2.1.1) and (2.1.2) are:

minw,b,ξ
1
2‖w‖

2 + C
∑N

i=1 ξi

s.t. yi (w · xi + b) ≥ 1− ξi ∀i, ξi ≥ 0. ∀i (2.3.1)
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minα W (α) = −
∑N

i=1 αi + 1
2

∑N
i=1

∑N
j=1 αiαjyiyjxi · xj

s.t. 0 ≤ αi ≤ C ∀i,
∑N

i=1 αiyi = 0. (2.3.2)

Comparing (2.3.2) and (2.1.2) we see that the only difference is that now the multipliers

are upper bounded by the parameter C. Having a look at the primal function, C determines

the compromise between maximizing the margin and misclassifying patterns (those with

ξi ≥ 1) or correctly classifying the ones closer to the hyperplane than its margin (those

with 0 < ξi ≤ 1).

The KKT conditions for this case give:

w∗ =
∑

i∈SV α
∗
i yixi, (2.3.3)

yi (w∗ · xi + b∗) = 1 ∀i ∈ SV NUB, (2.3.4)

yi (w∗ · xi + b∗) ≤ 1 ∀i ∈ SV UB, (2.3.5)

yi (w∗ · xi + b∗) ≥ 1 ∀i ∈ NSV, (2.3.6)

where we have two new sets SVUB and SVNUB formed by the indexes belonging to support

vectors whose coefficient respectively is or is not the upper bound, that is, C. Note that

the inner products can be calculated again via a kernel function if we want to work in a

feature space, and that now the feasibility of (2.3.1) is guaranteed due to the presence of

the slack variables.

2.4 Soft-margin with Square Penalties Case

As for the soft-margin 2-SVM, this time the slack variables ξi are penalized quadratically,

having thus the following primal and dual QP problems:

minw,b,ξ
1
2‖w‖

2 + C
2

∑N
i=1 ξ

2
i

s.t. yi (w · xi + b) ≥ 1− ξi ∀i, (2.4.1)

minα W (α) = −
∑N

i=1 αi + 1
2

∑N
i=1

∑N
j=1 αiαjyiyjxi · xj + 1

2C

∑N
i=1 α

2
i

s.t. 0 ≤ αi ∀i,
∑N

i=1 αiyi = 0. (2.4.2)

The KKT conditions for this case give:
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w∗ =
∑

i∈SV α
∗
i yixi, (2.4.3)

yi (w∗ · xi + b∗) = 1− α∗i
C ∀i ∈ SV, (2.4.4)

yi (w∗ · xi + b∗) ≥ 1 ∀i ∈ NSV. (2.4.5)

It is interesting to note that (2.4.2) is equivalent to (2.1.2), if we substitute the original

kernel function -in order to cover the term 1
2C

∑N
i=1 α

2
i - by the new function k̃ (xi,xj) =

k (xi,xj)+ δij
C , where δij is the Kronecker delta symbol. This is the same result obtained in

[10], who realized that by making the substitutions w̃ =

(
w
√
Cξ

)
, b̃ = b, x̃i =

(
xi

yi√
C

ei

)
(2.4.1) becomes (2.1.1), where ei denotes the N-dimensional vector in which the i − th

component is one and all the others are zero. Therefore, this case can be solved by an

algorithm designed for the hard-margin case, with the additional advantage that (2.4.1)

is always feasible due to the slack variables, regardless of the linear (in)separability of the

patterns in the input space (or in the feature space if we use kernels).

Henceforth hard-margin and soft-margin with square penalties will be considered as

equivalent problems.

2.5 Geometry of Support Vector Machines

As we will see in §3.1, in order to solve the previous QP problems there exist several

decomposition algorithms that perform well. Nevertheless, some problems still arise, such

as how to choose the parameter C in the soft-margin formulations, as it is a penalty term

not very intuitively tuneable. Besides, these QP problems are not really ”visual” in the

sense that a non-expert user can hardly grasp what the algorithm is doing. For these

and other reasons, [11, 12, 5] provide geometric reformulations of SVMs that allow us to

reinterpret very intuitively the dual formulations. Besides, fast geometric algorithms not

originally designed for SVM training can be adapted to solve them, as will be seen in §3.2.

2.5.1 Hard-margin and Soft-margin with Square Penalties as a Convex

Hull Nearest Point Problem

If we make the substitutions w = 2
‖w̃‖2 w̃, β = (−b+1)‖w̃‖2

2 , γ = (−b−1)‖w̃‖2
2 in (2.1.1) we

obtain the following primal and dual QP problems:

minw̃,b
1
2‖w̃‖

2 − β + γ

s.t. w̃ · xi ≥ β ∀i ∈ I1, w̃ · xi ≤ γ ∀i ∈ I2, (2.5.1)
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minα̃ W (α̃) = 1
2

∑N
i=1

∑N
j=1 α̃iα̃jyiyjxi · xj

s.t. α̃i ≥ 0 ∀i,
∑N

i=1 α̃iyi = 0,
∑N

i=1 α̃i = 2, (2.5.2)

where Ii denotes the set of indices of patterns that belong to class Ci. Making the previous

substitutions in the KKT conditions (2.1.3)–(2.1.5) yields:

w̃∗ =
∑

i∈SV α̃
∗
i yixi, (2.5.3)

w̃∗ · xi = β∗ ∀i ∈ I1 ∩ SV, (2.5.4)

w̃∗ · xi = γ∗ ∀i ∈ I2 ∩ SV, (2.5.5)

w̃∗ · xi ≥ β∗ ∀i ∈ I1 ∩NSV, (2.5.6)

w̃∗ · xi ≤ γ∗ ∀i ∈ I2 ∩NSV, (2.5.7)

which are the KKT conditions for (2.5.1) and thus (2.1.1) and (2.5.1) are equivalent prob-

lems [11, 5]. Note that (2.5.2) can be seen as a convex hull nearest point problem (CH-NPP)

where the objective is to find the closest points in the convex hulls of both classes, since we

are minimizing the norm ‖
∑N

i=1 α̃iyixi‖2. Therefore, the orientation of the hyperplane is

given by the optimal vector w̃∗ = w̃∗1− w̃∗2, where w̃∗1 =
∑

i∈I1 α̃
∗
ixi,

∑
i∈I1 α̃

∗
i = 1, α̃∗i ≥ 0

and w̃∗2 =
∑

i∈I2 α̃
∗
ixi,

∑
i∈I2 α̃

∗
i = 1, α̃∗i ≥ 0 give respectively the optimal points in

CH (C1) and CH (C2). As for its position, it is made to bisect the segment between

w̃∗1 and w̃∗2 and thus it is easy to infer by means of a simple geometric argument that the

bias must be b̃∗ = ‖w̃∗2‖2−‖w̃∗1‖2
‖w̃∗‖2 [5].

2.5.2 Soft-margin with Linear Penalties as a Reduced Convex Hull Near-

est Point Problem

It also turns out in [11] that (2.3.1) can be recast in geometrical terms. Using the same

substitutions specified in §2.5.1, together with µ = C‖w̃‖2
2 , ξ̃i = ξi‖w̃‖2

2 , in (2.3.1) yields the

new primal and dual QP problems:

minw̃,b,ξ
1
2‖w̃‖

2 − β + γ + µ
∑N

i=1 ξ̃i

s.t. w̃ · xi ≥ β − ξ̃i ∀i ∈ I1, w̃ · xi ≤ γ + ξ̃i ∀i ∈ I2, ξ̃i ≥ 0 ∀i, (2.5.8)

minα̃ W (α̃) = 1
2

∑N
i=1

∑N
j=1 α̃iα̃jyiyjxi · xj

s.t. 0 ≤ α̃i ≤ µ ∀i,
∑N

i=1 α̃iyi = 0,
∑N

i=1 α̃i = 2. (2.5.9)
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Making the previous substitutions in the KKT conditions (2.3.3)–(2.3.6) this time yields:

w̃∗ =
∑

i∈SV α̃
∗
i yixi, (2.5.10)

w̃∗ · xi = β∗ ∀i ∈ I1 ∩ SV NUB, (2.5.11)

w̃∗ · xi = γ∗ ∀i ∈ I2 ∩ SV NUB, (2.5.12)

w̃∗ · xi ≤ β∗ ∀i ∈ I1 ∩ SV UB, (2.5.13)

w̃∗ · xi ≥ γ∗ ∀i ∈ I2 ∩ SV UB, (2.5.14)

w̃∗ · xi ≥ β∗ ∀i ∈ I1 ∩NSV, (2.5.15)

w̃∗ · xi ≤ γ∗ ∀i ∈ I2 ∩NSV, (2.5.16)

which are the KKT conditions for (2.5.8) and thus (2.3.1) and (2.5.8) are equivalent prob-

lems [11, 12]. Note that (2.5.9) can be seen as a reduced convex hull nearest point problem

(RCH-NPP) by the same reasoning as before, since now w̃∗1 =
∑

i∈I1 α̃
∗
ixi,

∑
i∈I1 α̃

∗
i =

1, 0 ≤ α̃∗i ≤ µ and w̃∗2 =
∑

i∈I2 α̃
∗
ixi,

∑
i∈I2 α̃

∗
i = 1, 0 ≤ α̃∗i ≤ µ give respectively the

optimal points in RCH (C1) and RCH (C2).

2.5.3 Support Vector Classification as a Minimal Norm Problem

In the work [5] there is an additional contribution regarding the geometry of SVMs. Once

we have the duals (2.5.2) and (2.5.9), we can build the Minkowski difference of the (reduced)

convex hulls, that is, the set Z = {w1 −w2, w1 ∈ (R)CH (C1) , w2 ∈ (R)CH (C2)}. It

is clear that if we try to minimize ‖z‖2, z ∈ Z we have a minimal norm problem (MNP)

equivalent to (2.5.2) (to (2.5.9)).

This point of view has the advantages that the solution is unique in terms of the

coefficients α∗i -something which is not necessarily true in a (R)CH-NPP, where w∗ is

unique, but maybe different values for α∗i give it-, and that a new kind of algorithms can

be used to train SVMs (see §3.2.1). Its major drawback is that MNP looks simpler than

(R)CH-NPP, but actually the set Z is a convex polytope that can have up to N1N2 vertices,

where Ni = |Ii|, so this can become a very hard problem if the set Z needs explicitly be

built.



Chapter 3

State-of-the-art in Support Vector

Machine Training

3.1 Decomposition Algorithms

As we mentioned in chapter §1, decomposition methods for training SVMs rely on the idea

of not solving the whole dual QP problem, but on solving iteratively (with a specific QP

solver or another SVM algorithm) for a subset of multipliers. Therefore, the original QP

problem is broken down into a series of smaller QP subproblems. If these subproblems are

small enough, no space problems will arise even if the original QP to be solved is very large

in terms of the number of patterns.

However, as a consequence of the decomposition, each iteration will not produce much

progress towards the optimum, so the multipliers chosen should be those that allow us to

progress as much as possible towards the solution of the global QP. This set of chosen mul-

tipliers is popularly known as the working set. Each algorithm belonging to this category

uses a different strategy to determine which multipliers are to be included in the working

set. From these algorithms, the best-known are chunking [13], a preliminary decomposition

method by Osuna et al. [14], SMO [6] and SVM-Light [15]. In chunking, the size of the

working set tends to grow with time, though it can occasionally shrink. In the method by

Osuna, the size of the working set is fixed in advance and constant with time. As for SMO

and SVM-Light, the following sections explain both methods in more detail.

3.1.1 SMO Algorithm

This method is intended to solve the soft-margin with linear penalties dual formulation

(2.3.2) (recall that it can also be applied to solve (2.1.2) or (2.4.2) by taking C = ∞). It

13
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takes the strategy introduced by Osuna to its extreme by fixing the size of the working set

to 2. This is the smallest possible size for it, since otherwise the constraint
∑N

i=1 αiyi = 0

may not be fulfilled. It turns out that by doing this we can find the solution analytically,

so that an additional solver is not necessary. This is the main advantage of SMO, as each

iteration needs very little time once the two multipliers of the current working set have

been chosen.

In order to choose them, Platt [6] proposed two heuristics. As a result of these heuris-

tics, one of the multipliers is always associated with a pattern that violates some of the

KKT conditions (2.3.4)–(2.3.6), for this ensures that each iteration reduces the overall dual

function (2.3.2). A parameter ε > 0 is introduced for relaxing, so that these conditions

become:

1− ε ≤ yi (w · xi + b) ≤ 1 + ε ∀i ∈ SV NUB, (3.1.1)

yi (w · xi + b) ≤ 1 + ε ∀i ∈ SV UB, (3.1.2)

yi (w · xi + b) ≥ 1− ε ∀i ∈ NSV. (3.1.3)

The following definitions for the decision function and the classification error are also

introduced:

f (xi) = w · xi + b =
∑

j∈SV αjyjxj · xi + b, (3.1.4)

Ei = f (xi)− yi. (3.1.5)

To be precise, Platt’s heuristics operate as follows:

1. The first heuristic examines by default not the entire training set, but only the pat-

terns in SVNUB, determining whether each of these violates or not the relaxed KKT

conditions (3.1.1)–(3.1.3). If a violating pattern is found, it is immediately eligible

for optimization. The second heuristic is launched to find the second multiplier. If

the second heuristic is not able to find a second multiplier, the first heuristic chooses

the next violating pattern in SVNUB. In the case that the second heuristic cannot

find a second multiplier for any violating pattern in SVNUB (or that no pattern in

SVNUB violates the relaxed KKT conditions), the first heuristic repeats the same

process but over the entire training set, not only over SVNUB. In the extreme case

where the second heuristic cannot either find a second multiplier for any choice of

the first heuristic (or where there is no violating first pattern), SMO terminates since

the progress in the dual function is considered to be negligible. If it can indeed find
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a second multiplier, next time the first heuristic will examine again just the patterns

in SVNUB.

2. The second heuristic tries to maximize the step taken during the joint optimization of

the multipliers chosen by both heuristics. Assuming that the first heuristic has chosen

αi and that the second one is currently examining αj , the step size is approximated

by computing Ei, Ej and choosing an αk such that |Ei − Ek| = maxj {|Ei − Ej |}. If

as a result of this choice, not enough progress is obtained after the optimization (see

[6] for the details concerning what is considered to be enough progress), the second

heuristic iteratively chooses a pattern in SVNUB. If again none of these is able to

provide enough progress, the second heuristic iterates over the whole training set. If

no training pattern is good enough, the first heuristic is resumed to look for another

αi, as explained above.

Refer to section §4.2.1 for what the operations performed by SMO during a joint opti-

mization are, as well as for a discussion about these heuristics and another ones proposed

more recently in [7].

3.1.2 SVM-Light Algorithm

This method is also intended to solve the soft-margin with linear penalties dual formulation

(2.3.2). It is more general than SMO and similar to the method by Osuna, so that the

working set size is set in advance to a fixed number, say q, with the constraint that this

number is even. The main contribution of SVM-Light, apart from its numerous computa-

tional tricks that make it very fast, is the way to select the multipliers for the working set,

by solving the following problem:

mind∇αW (α) · d

s.t. y · d = 0,

di ≥ 0 ∀i ∈ NSV,

di ≤ 0 ∀i ∈ SV UB,

−1 ≤ di ≤ 1 ∀i,

| {di|di 6= 0} | = q. (3.1.6)

Here d represents the steepest direction of descent determined by Zoutendijk’s method

[16] applied to a first-order approximation of the dual function. If a component di is not

zero, it means that αi is selected for the working set, otherwise that multiplier is frozen in
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the current iteration and does not take part in the QP subproblem. This approach seems to

be more convenient than heuristics like the ones in SMO, but the additional optimization

problem (3.1.6) has to be solved in each iteration of SVM-Light. Fortunately, the constraint

that q is even makes this problem automatically solvable (cf. sections §4.3 and §4.3.1).

In order to make it faster, SVM-Light also has an own heuristic in order to decide which

multipliers are likely to be associated to patterns in NSV or SVUB. If it were possible to

know this in advance, all those patterns would never take part in the QP subproblems, as

their multipliers’ optimal values would have been correctly fixed. So we could train just

over the patterns in SVNUB, making the training task much easier and faster.

This heuristic, known as shrinking, keeps a history of two Lagrange multipliers for

every pattern. These Lagrange multipliers are the ones used to derive the KKT conditions

0 ≤ αi and αi ≤ C by applying optimality theory [9]. The continuous positiveness of

these multipliers is an estimate of the likelihood that a pattern belongs to NSV or SVUB,

respectively. The patterns for which this happens are assumed to belong to NSV or SVUB,

thus they do not take part in any QP subproblem from that moment. Since shrinking

is a heuristic, it can fail, so SVM-Light’s stopping criterion is based on the one in SMO,

that is, checking the relaxed KKT conditions (3.1.1)–(3.1.3). If the conditions are violated

by some of the ”shrunk” patterns, the optimization continues with the violating patterns

”unshrunk”, i.e. being able to take part in the QP subproblems (see the details in [15]).

3.2 Geometry-based Algorithms

On the other hand, geometry-based methods exploit the geometric reinterpretation of SVM

classifiers described in §2.5. These methods are often referred in the literature with the

generic name of nearest point algorithms (NPA). These are iterative algorithms that asymp-

totically approximate either the closest point of a convex hull to the origin, either the closest

points belonging to two different convex hulls, or the closest points belonging to two dif-

ferent reduced convex hulls, depending on whether the MNP, CH-NPP or RCH-NPP SVM

reformulation is exploited.

The most common research procedure in this field consists of coming up with a MNP

solver, adapting it to cover the CH-NPP problem, and finally trying to generalize this

adaptation to cover also the RCH-NPP case. This procedure has given rise to the following

triplet of algorithms: Gilbert’s algorithm (MNP solver) [17], Schlesinger-Kozinec’s -SK- al-

gorithm (adaptation of Gilbert’s one to CH-NPP) [18], and RCH-SK algorithm (adaptation

of the latter to RCH-NPP, at first partially adapted in [19], and recently totally adapted

in [20]).
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A recent line of investigation consists of adapting Mitchell-Demyanov-Malozemov’s -

MDM- MNP solver [4], since it is remarkably faster than Gilbert’s one. The following

section explains this method in detail, paving the way for CH-MDM, which is studied in

the next chapter.

3.2.1 Unary MDM Algorithm

As it was originally presented in [4], the aim of this algorithm is to solve iteratively a MNP

in a convex polyhedron, that is, minimizing ‖w‖2 for w ∈ CH (A), where A = {xi} , i =

1, · · · , N . Observe that this is not the same problem described in section §2.5.3, where the

convex polyhedron used is Z = CH
(
Z̃
)

, with Z̃ = xi − xj, i ∈ I1, j ∈ I2, although if we

managed somehow to work implicitly with the set Z̃ instead of A then we would be solving

(2.5.2).

The algorithm calculates a sequence of approximations w(t) to w∗ in the following way:

starting with an arbitrary w(0) ∈ CH (A) ⇒ w(0) =
∑N

i=1 α
(0)
i xi,

∑N
i=1 α

(0)
i = 1, an

appropriate direction of movement d(0) is searched, where:

d(t) = x(t)
L − x(t)

U , (3.2.1)

x(t)
L = argminxi

(
w(t) · xi

)
, (3.2.2)

x(t)
U = argmaxxi|αi>0

(
w(t) · xi

)
. (3.2.3)

Putting this into relationship with the concept of margin, if we work with a zero bias

term b the hyperplane is forced to pass through the origin and x(0)
L is the pattern with least

margin from the hyperplane that has as its normal vector w(0), whereas x(0)
U is the support

vector with most margin. The intuitive idea why this direction is chosen is that x(0)
U may

not be a support vector in the optimum, as it is far from the current hyperplane.

Now the following approximation w(1) is calculated as the point with least norm in

the segment joining w(0) and w(0), this last point being the one obtained as a result of

removing xU from the representation of w(0) while moving along the direction d(0). That

is, w(0) = w(0) + α0
Ud(0). The same process is carried out for any iteration t, because d(t)

is guaranteed to be a descent direction. To see this, let g (r) denote the norm of a point in

the aforementioned segment:

g (r) = ‖ (1− r) w(t) + rw(t)‖2, 0 ≤ r ≤ 1. (3.2.4)

Then g′ (0) = 2α(t)
U w(t)·d(t) ≤ 0, provoking thus a descent unless we are at the optimum.

If we force g′ (r) = 0, we get the value r∗ = min
{

1, ∆(t)

α
(t)
U ‖d(t)‖2

}
, where:
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∆(t) = −w(t) · d(t) = w(t) · x(t)
U −w(t) · x(t)

L . (3.2.5)

We get thus the movement w(t+1) = w(t) + λd(t), where:

λ = r∗α
(t)
U = min

(
α

(t)
U ,

∆(t)

‖d(t)‖2

)
. (3.2.6)

Since strictly speaking the algorithm is only working with the coefficients αi, this move-

ment obviously implies the following simple update:

α
(t+1)
i = α

(t)
i ∀i 6= L,U, (3.2.7)

α
(t+1)
L = α

(t)
L + λ, (3.2.8)

α
(t+1)
U = α

(t)
U − λ. (3.2.9)

There are several possible stopping criteria for this algorithm, but in [4] no particular

criterion is proposed. One of the simplest consists of checking that ∆ ≈ 0, since w∗ · x∗U =

w∗ · x∗L. In the next chapter, more criteria are discussed for CH-MDM in section §4.1.3.



Chapter 4

CH-MDM and its Relationship

with Decomposition Methods

As it has been seen in the previous chapter, Gilbert’s algorithm gave rise to the CH-SK

algorithm when the CH-NPP was directly considered instead of the MNP, and recently this

has been also extended to cover the reduced convex hull case by the RCH-SK algorithm.

However, Gilbert’s algorithm is much slower than MDM [5], the reason being that it is

quite costly to get rid of wrong support vectors that have entered the active set, that is,

to remove mistaken initial choices xi by achieving αi = 0. The MDM algorithm can, on

the other hand, easily dispose of wrong SV choices since in (3.2.9) αU becomes zero when

λ = αU . So it would be very convenient to generalize MDM in the same way, producing

far more efficient solvers for CH-NPP and RCH-NPP than their counterparts CH-SK and

RCH-SK.

This has already been carried out, but only up to a certain point. In [5] the MDM

algorithm was adapted to solve CH-NPP (2.5.2) by working implicitly with the polyhedron

Z̃. Nonetheless, working with the Minkowski difference of the convex hulls is quite less

visual than working with both hulls separately. The adaptation that is proposed in section

§4.1 for the CH-NPP is really straightforward and it is performed in a very similar way

than the one for CH-SK.

Regarding the generalization for RCH-NPP, the only attempt that seems to have been

tried so far is the very recent one proposed in [21], which makes use of the projection

theorem stated in [19] and [20]. Nevertheless, this generalization is not fully satisfactory,

because its movements inside the reduced convex hull are not the same as the ones per-

formed by CH-MDM inside a standard hull (in this approach the point used as xU is not a

vertex of the RCH as it should be, but one of the CH), so the advantages that CH-MDM

offers are partially lost. It can be seen that RCH-SK, on the contrary, performs equiva-

19
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lently to its counterpart CH-SK (this comes from the fact that CH-SK also uses xL, which

is indeed a vertex of the RCH in RCH-SK). In short, coming up with a properly generalized

RCH-MDM is still an open problem.

After obtaining CH-MDM, the algorithm is considered under analytic and feasible di-

rection perspectives in sections §4.2 and §4.3, respectively. These observations help us

to establish clear relationships between CH-MDM and the two decomposition methods de-

scribed in the previous chapter: SMO and SVM-Light. To our knowledge, the consideration

of CH-MDM from the point of view of feasible directions is a pioneer one. The attempt to

put into relationship decomposition and geometric algorithms, instead of considering them

as different approaches (which is what has been done so far in the literature that has been

examined), seems to be also a novelty.

4.1 Implementation of CH-MDM

This section presents the pseudocode for an implementation of MDM for CH-NPP, following

the lines of the one given in [18]. The first three subsections deal with some preliminary

observations about how to calculate the margins, how to choose the update direction and

how to stop. After them, the fourth subsection contains the proposed pseudocode.

4.1.1 Calculating the margins

Firstly, as we are now working with two convex hulls the projections have to be calculated

along yiw, because if xi ∈ C1 then the origin of the MNP problem becomes w2 and if

xi ∈ C2 it becomes w1. In this way, the projections for the first class are along the vector

w = w1 −w2 and along −w = w2 −w1 for the second class. Besides, this change in the

origin forces us to change the patterns for xi − w2 if xi ∈ I1 and xi − w1 if xi ∈ I2. In

summary, the margin m for a pattern xi is now calculated as follows:

m (xi) = (w1−w2)·(xi−w2)
‖w‖ ∀i ∈ I1, (4.1.1)

m (xi) = (w2−w1)·(xi−w1)
‖w‖ ∀i ∈ I2. (4.1.2)

4.1.2 Choosing the Update Direction

Secondly, as a consequence of the constraints
∑N

i=1 αiyi = 0 and
∑N

i=1 αi = 2, the patterns

xL and xU must belong to the same class (otherwise, apart from αU and αL, two additional

coefficients would have to be changed so as not to get out of the hulls). This implies that

they cannot be simply the patterns with minimal and maximal margins as in §3.2.1. If the
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minimal and maximal-margin patterns do not belong to the same class, three immediate

possibilities come to mind:

1. Set xL = argminxi
{m (xi)} and xU = argmaxxi | i∈ SV ∧i ∈ I(xL) {m (xi)}

2. Set xU = argmaxxi | i∈ SV {m (xi)} and xL = argminxi | i∈I(xU) {m (xi)}

3. Set xU1 = argmaxxi | i ∈ SV ∩I1 {m (xi)}, xL1 = argminxi | i∈I1 {m (xi)}, as well as

xU2 = argmaxxi | i ∈ SV ∩I2 {m (xi)}, xL2 = argminxi | i∈I2 {m (xi)}. Set ∆1 = yU1w ·
xU1 − yL1w · xL1 and ∆2 = yU2w · xU2 − yL2w · xL2 and take xU and xL from

∆ = max {∆1,∆2}.

These choices clearly correspond to taking the class of xL, taking the class of xU and

taking the class with maximal ∆, respectively. From now on, we will use the last possibility.

Whatever the choice, once xL and xU have been chosen, in order to be consistent with

(3.2.5) ∆ is clearly seen to be defined as:

∆ = ‖w‖ (m (xU)−m (xL)) . (4.1.3)

4.1.3 Choosing When to Stop

Thirdly, it has not been said yet when MDM stops (it cannot be run indefinitely, since it

only converges asymptotically to the optimal point). Several stopping criteria have been

proposed in the literature about NPP algorithms, based on different geometrical reasonings

after choosing an accuracy parameter ε:

1. Stop if ∆ ≤ ε‖w‖2, since at the optimum ∆∗ = 0 [4].

2. Stop if ∆ ≤ 2ε‖w‖2, since this implies that the KKT conditions are fulfilled with

accuracy ε‖w‖2 (see below).

3. Stop if 2‖w‖ − (mini∈I1 {m (xi)}+ mini∈I2 {m (xi)}) ≤ ε‖w‖, since this difference is

0 at the optimum [5, 19].

4. Stop if ‖w‖ − mini {m (xi)} ≤ ε‖w‖, since this difference is also 0 at the optimum

[18, 20].

Note that some of these criteria (e.g. [18, 19]) were originally conceived comparing with

ε and not with ε‖w‖, so they were based on computing an absolute error, whereas these

are based on relative errors. We find this approach more consistent, for the norm of the
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optimum vector will depend on the problem being addressed and now it is this norm what

is being approximated with relative accuracy ε [5].

Note as well that the first and the second criteria are equivalent, but the reasoning

used to give them is quite different. The first one is based on the geometrical fact that

w∗ · xU = w∗ · xL, whereas the second criterion is explained next.

Without loss of generality, let us see how ∆1 ≤ 2ε must be satisfied to fulfil the KKT

conditions with an accuracy ε (the reasoning is analogous for ∆2). Consider the conditions

(2.5.4) and (2.5.6) . In order to find an approximate solution they can be relaxed like this,

by introducing an ε > 0:

β − ε ≤ w · xi ≤ β + ε ∀i ∈ I1 ∩ SV, (4.1.4)

β − ε ≤ w · xi ∀i ∈ I1 ∩NSV. (4.1.5)

Since yi = +1 we have that w · xi = yiw · xi ∀i ∈ I1. From equation (4.1.1), and by

introducing the term w ·w2 in (4.1.4) and (4.1.5) we get:

β − ε−w ·w2 ≤ ‖w‖m (xi) ≤ β + ε−w ·w2 ∀i ∈ I1 ∩ SV,

β − ε−w ·w2 ≤ ‖w‖m (xi) ∀i ∈ I1 ∩NSV.

According to the definitions for xU1 and xL1 , it goes without saying that xU1 is the

pattern that violates the most the first equation’s right inequality (if it does violate it).

As for xL1 , it is the one that violates the most either the first equation’s left inequality

or the second equation’s only inequality (if it does violate them). Observe that the KKT

conditions provide us with an additional reasoning, aside from geometry, to choose xU1

and xL1 as we do; the former in SV ∩ I1 and the latter in I1.

Now, if the bias is taken to bisect the segment between w1 and w2, i.e. b = ‖w2‖2−‖w1‖2
‖w‖2 ,

it is easy to see from the definition of β in section §2.5.1 that β = w ·w1. Therefore, if the

above conditions are to be satisfied the following must be true:

‖w‖m (xU1) ≤ ‖w‖2 + ε,

‖w‖2 − ε ≤ ‖w‖m (xL1) .

Using (4.1.3) implies that ∆1 ≤ 2ε, which is what we wanted to show. Replacing ε

with ε‖w‖2 in the reasoning makes the relaxation relative instead of absolute and yields

∆1 ≤ 2ε‖w‖2, which, together with ∆2 ≤ 2ε‖w‖2, justifies the second stopping criterion.
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4.1.4 Final implementation

At this point we are ready to provide an implementation for the MDM algorithm. The

lines of [18, 20] regarding notation and general scheme will be followed. The next variables

will be used and can be cached so as to accelerate the execution:

A = w1 ·w1 =
∑

i∈I1
∑

j∈I1 αiαjxi · xj,

B = w2 ·w2 =
∑

i∈I2
∑

j∈I2 αiαjxi · xj,

C = w1 ·w2 =
∑

i∈I1
∑

j∈I2 αiαjxi · xj,

Di = w1 · xi =
∑

j∈I1 αjxi · xj ∀i,

Ei = w2 · xi =
∑

j∈I2 αjxi · xj ∀i.

Note that the algorithm only involves inner products between patterns, so that it

can be directly kernelized with the procedure explained in §2.2. The updating rules for

A,B,C,Di, Ei are easily obtained from (3.2.7), (3.2.8), (3.2.9) and the definitions of these

variables. As for the value for λ in line 16, the reasoning is analogous to what was said to

yield equation (3.2.6) (see also the following section), so that the algorithm ensures that

w1 ∈ CH (C1) and w2 ∈ CH (C2).

4.2 CH-MDM as a Two Vector Decomposition Method

Recall from section §3.1 that for every iteration in a decomposition method there are some

coefficients αi which are ”frozen”, and that as a result the simpler optimization task over

the non-frozen coefficients is solved. If we have a look at the updates in algorithm 1 we

clearly see that, as in the unary case, the only coefficients to be updated are αU and αL,

so the other ones are effectively frozen acting in the spirit of decomposition techniques.

To see that it is indeed a decomposition algorithm, it has to be shown that, once

the non-frozen coefficients αU and αL have been chosen, the dual problem is optimized

with respect to them. The problem in this case is (2.5.2), that is, minimizing ‖w‖2, with

w = w1 −w2 =
∑N

i=1 αiyixi. Without loss of generality, let us assume that yU = yL = 1.

From what was said in section §3.2.1, after finding xL and xU the segment between w1

and w1 = w1 + αU (xL − xU) is considered.

We can write analytically this segment in the form w1 (r) = w1 + rαU (xL − xU) , 0 ≤
r ≤ 1. Since we want to optimize the norm over this segment while taking w2 as the origin,

we can write:
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Algorithm 1 CH-MDM algorithm for binary SVMs
1: Initialize every αi so that w1 ∈ CH (C1) and w2 ∈ CH (C2).

2: Calculate A,B,C as well as Di, Ei ∀i.
3: loop

4: Set xU1 = argmaxxi | i ∈ SV ∩I1 {m (xi)}, xL1 = argminxi | i∈I1 {m (xi)}.
5: Set xU2 = argmaxxi | i ∈ SV ∩I2 {m (xi)}, xL2 = argminxi | i∈I2 {m (xi)}.
6: Calculate ∆1 and ∆2.

7: if ∆1 ≥ ∆2 then

8: Set xU = xU1 ,xL = xL1 ,∆ = ∆1.

9: else

10: Set xU = xU2 ,xL = xL2 ,∆ = ∆2.

11: end if

12: if stop criterion is true then

13: Set w = w1 −w2, b = ‖w2‖2−‖w1‖2
‖w‖2 .

14: Return w, b.

15: end if

16: Set F = ‖xL − xU‖2, λ = min
{
αU ,

∆
F

}
.

17: if U,L ∈ I1 then

18: A⇐ A+ λ (2 (DL −DU ) + λF )

19: C ⇐ C + λ (EL − EU )

20: Di ⇐ Di + λ (xi · xL − xi · xU) ∀i
21: else

22: B ⇐ B + λ (2 (EL − EU ) + λF )

23: C ⇐ C + λ (DL −DU )

24: Ei ⇐ Ei + λ (xi · xL − xi · xU) ∀i
25: end if

26: αL ⇐ αL + λ

27: αU ⇐ αU − λ
28: end loop

‖w1 (r)−w2‖2 = ‖w‖2 + (rαU‖xL − xU‖)2 − 2rαUw · (xU − xL) . (4.2.1)

Differentiating and equalling to zero yields r∗ = w·(xU−xL)
αU‖xU−xL‖2 . Using (4.1.3) gives r∗ =

∆
αU‖xU−xL‖2 , 0 ≤ r∗ ≤ 1. Note that the first inequality is guaranteed since both the

numerator and denominator are greater or equal than zero, but not the second one. Now
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if we define λ = αUr
∗ and ensure that r∗ ≤ 1 we have the same expression used in line 16

of algorithm 1.

The reasoning for the case where yU = yL = −1 is analogous. Therefore, the dual is

optimized with respect to αU and αL, which is what was to be shown.

4.2.1 Relationship between CH-MDM and SMO

Recall from section §3.1.1 that SMO takes the decomposition strategy to its extreme by

choosing only two multipliers in each iteration. This choice of two multipliers makes it

clear that this method has a strong relationship with CH-MDM, since we have just seen

how CH-MDM also solves analytically the resulting task on two multipliers for a CH-NPP.

In this section we characterize what this relationship exactly consists of.

SMO as it stands in [6] solves the dual of the soft-margin 1-SVM formulation, that is,

(2.3.2). To show the relationship I will follow the lines of [6] and section 7.5 of [9]. First,

we have to know the operations performed by SMO in a joint optimization of the two

multipliers it chooses, say, for convenience, α1 and α2.

Because of the problem constraints
∑N

i=1 αiyi = 0 and 0 ≤ αi ≤ C, it is fairly clear that

αnew1 , αnew2 ∈ [U, V ], where:

U = max
{

0, αold1 + αold2 − C
}
, V = min

{
C,αold1 + αold2

}
if y1 = y2, (4.2.2)

U = max
{

0, αold2 − αold1

}
, V = min

{
C,C − αold1 + αold2

}
if y1 6= y2, (4.2.3)

and αoldi , αnewi denote respectively the current (i.e. before the optimization) and new (i.e.

after it) values of the multiplier αi. We can state the following theorem taken from [9]

(refer to the proof in that book or in [6]), which specifies the optimization carried out by

SMO:

Theorem 1 Let κ = ‖x1−x2‖2, and Ei defined in equation (3.1.5). Assuming without loss

of generality that we optimize first over α2, we get the optimal value αnew2 = αold2 + y2(E1−E2)
κ .

After cutting this αnew2 (if necessary) to be in the interval [U, V ], the optimal value for the

other multiplier will be αnew1 = αold1 + y1y2

(
αold2 − αnew2

)
.

Recall that the problem (2.5.2) solved by CH-MDM is a rescaling of (2.3.2) in which

in every moment C =∞ and
∑N

i=1 αi = 2. Interestingly, despite of this implicit rescaling,

the updates performed by both algorithms have the same form, as stated in the following

novel result:
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Theorem 2 Assume that SMO and CH-MDM choose the same patterns while solving their

respective problems, that is, α2 = αL, α1 = αU . Then, the updates carried out by both

algorithms are identical.

Proof Since α1 = αU and α2 = αL, we have y1 = y2 because of CH-MDM’s inherent

constraint that xU and xL belong to the same class. This, together with C =∞, produces

the bounds U = 0 and V = αold1 + αold2 . As y1y2 = 1 and using theorem 1, the update rule

for SMO would be αnew1 = αold1 + αold2 − αnew2 (after cutting αnew2 to lie in [U, V ]).

As E1 = f (x1) − y1, E2 = f (x2) − y2 and y1 = y2, we get E1 − E2 = f (x1) − f (x2).

Thus, applying that theorem:

αnew2 = αold2 + y2(f(x1)−f(x2))
κ .

Since αold1 = αU and αold2 = αL it is obvious from algorithm 1 that κ = F = ‖d‖2.

Using the facts that f (xi) = w · xi + b, together with yU = y1 = y2 = yL, makes

y2 (f (x1)− f (x2)) = yUw · xU − yLw · xL = ∆. Therefore, the rule for the uncut value is

the same as αnew2 = αold2 + ∆
‖d‖2 .

The last step is cutting this value. As ∆
‖d‖2 ≥ 0 it is impossible that αnewL < U = 0. So the

only cut is setting αnewL = V if αoldL + ∆
‖d‖2 > V = αoldL + αoldU . This last condition implies

that ∆
‖d‖2 > αoldU . Hence, the result of the cut is the same as the update rule

αnewL = αoldL + min
{
αoldU , ∆

‖d‖2

}
.

It is immediate that this rule and the one for αnewU = αnew1 are equivalent to the ones

for MDM in (3.2.8), (3.2.9) and algorithm 1, proving thus the theorem.

This result is very intuitive if it is noted that both algorithms solve analytically for the

two chosen multipliers, but from different points of view; MDM in a purely geometrical

way and SMO without taking any geometrical consideration. At this point an interesting

question to answer is whether SMO actually takes xU and xL for updating. The answer

is that it does not necessarily choose them, at least from what the heuristics originally

proposed by Platt do (cf. section §3.1.1).

Analyzing them we can see that, basically, the first heuristic takes any pattern that

violates the relaxed KKT conditions (3.1.1)-(3.1.3); then the second one looks for a pattern

that together with the other one causes a big enough descent in the dual. However, it will

turn out in the following section that MDM chooses the best descent direction among all

possible descent directions with two patterns. Moreover, as we have seen in §4.1.3 that
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it also takes the pair of points that violate the most (considered as a couple) the KKT

conditions, the underlying complexity in the heuristics of SMO seems unnecessary for what

is desired: MDM yields the biggest descent and at the same time updates the patterns

which violate the most the KKT conditions, exactly the two goals pursued by the two

heuristics, but in a much simpler and quicker way.

Similar ideas were used in [7] to propose two modifications of Platt’s SMO. In the first

modification, the first heuristic is not changed (say it chooses α2 in a certain moment),

whereas the second heuristic always chooses the multiplier α1 associated to the pattern

that maximizes the KKT violation produced by x1 and x2 as a couple. In the second

modification, α1 and α2 correspond to the patterns that maximize as a couple the KKT

violation. In both modifications other minor changes are present to check optimality (the

stopping criterion is still checking the relaxed KKT conditions (3.1.1)-(3.1.3)) and to choose

the bias.

These three SMO versions are increasingly simple: Platt’s SMO tries to approximate

the most violating couple in a very intricate way, Keerthi’s modification 1 fixes the choice

for α1 to approximate the most violating couple once α2 is chosen, and finally Keerthi’s

modification 2 fixes both α1 and α2 to the most violating couple, i.e. in theory what MDM

does.

Besides, in [7] modification 2 is claimed to be the fastest method among the three

versions. This fact is coherent with what was said above about MDM taking the biggest

descent. The KKT conditions are not the same, because Keerthi’s modification 2 solves for

(2.3.2) and CH-MDM for (2.5.2), but both algorithms are expected to work very similarly

if we take C =∞ (more about this in the experimental section §5).

4.3 CH-MDM as an Improving Feasible Direction Method

To see that MDM is also an improving feasible direction technique, it is useful to revise

some preliminary theory about feasible directions. I will follow the lines of [22], where we

want to solve a linear-constraint optimization problem of the following general form:

minα f (α)

s.t. Θα ≤ θ, Φα = φ, (4.3.1)

where Θ and Φ are matrices for the inequality and equality constraints respectively, and

θ and φ the corresponding vectors for the right terms of the constraints. Now it is fairly
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easy to reformulate the convex hull dual (2.5.2) in this matrix form, since the constraints

are linear too:

minα W (α) = 1
2α

TKα

s.t. − INα ≤ 0,

(
yT

1T

)
α =

(
0

2

)
, (4.3.2)

where IN stands for the N-dimensional identity matrix and Kij = yiyjxi · xj. Next, we

define the concepts of feasible and improving directions:

Definition 1 Assume that α is a feasible point for problem (4.3.1) (i.e. it fulfils the prob-

lem constraints). A direction d is said to be feasible if ∃δ > 0 such that α+ rd ∀r ∈ (0, δ)

is still a feasible point.

Definition 2 Assume that α is a point (not necessarily feasible) for problem (4.3.1). A

direction d is said to be improving if ∃δ > 0 such that f (α+ rd) < f (α) ∀r ∈ (0, δ).

We are ready to reproduce for completeness the following lemma from [22] (without

proof):

Lemma 1 Assume that α is a feasible point for problem (4.3.1) such that the inequality

constraint matrix Θ can be decomposed into Θ1 and Θ2 satisfying Θ1α = θ1 and Θ2α < θ2,

where θT =
(
θT1 θ

T
2

)
. Then, a direction d 6= 0 is feasible if and only if Θ1d ≤ 0 and Φd = 0.

Furthermore, it is improving if ∇αf (α) · d < 0.

What this lemma is saying in our context is that, if we want to find a feasible direction,

we need only care about the coefficients αi for which the inequality constraint becomes

an equality (i.e. those related to Θ1 and θ1) and about satisfying the condition Θ1d ≤ 0.

Besides, the condition Φd = 0 means that the right term of each equality constraint

becomes zero if we use d instead of α. Once both conditions are fulfilled, we only need

that the inner product between the gradient of the objective function and the improving

direction be less than zero in order this direction to be also an improving one.

Turning our attention to (4.3.2) it is clear that Θ1 is formed by the rows i of −IN
such that αi is a non-support vector, because the inequality αi ≤ 0 becomes αi = 0.

Conversely, Θ2 is formed by the rows corresponding to support vectors. Let us denote

these submatrices of −IN as −INSV and −ISV respectively, so that we seek −INSV d ≤ 0.

The equality constraints become now
∑N

i=1 yidi = 0 and
∑N

i=1 di = 0. In order to find

the most improving direction we can think of minimizing ∇αf (α) · d, where for this case

∇αf (α) = Kα.
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This idea is correct, but observe that once we find an improving feasible direction d

the direction d = rd, r > 0 is also improving and feasible and αTKd < αTKd, so that we

would be endlessly minimizing this product. Then, an additional constraint must be placed

to bound d. For example, in Zoutendijk’s method [16] this constraint is −1 ≤ d ≤ 1 (see

chapter 10 in [22] for other possibilities). From all this, looking for the most improving

feasible direction in CH-NPP becomes:

mind αTKd

s.t. y · d = 0, 1 · d = 0,

−INSV d ≤ 0,

−1 ≤ di ≤ 1 ∀i. (4.3.3)

By merging the two last constraints, this is trivially equivalent to:

mind F =
∑N

i=1 (Kα)i di

s.t.
∑N

i=1 yidi = 0,
∑N

i=1 di = 0,

0 ≤ di ≤ 1 ∀i ∈ NSV,

−1 ≤ di ≤ 1 ∀i ∈ SV. (4.3.4)

For the last step of the derivation, let us use a lemma stated and proved in [23], and

adapt its notation as follows for the problem at hand:

Lemma 2 If we need to optimize a function of the form
∑N

i=1widi subject to the following

constraints:

∑N
i=1 di = 0,

−1 ≤ di ≤ 1 ∀i,

| {di|di 6= 0} | = q,

q = 2r, r ∈
[
1, bN2 c

]
,

the solution is obtained in the way that follows. First, order the wi in decreasing order.

Secondly, take di = −1, i = 1 · · · r and di = +1, i = N − r + 1 · · ·N . This d gives the

function’s minimum value.
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This lemma, though seeming complicated, is very intuitive by paying attention to what

it says. We want to minimize a weighted function of some values wi, where the correspond-

ing weights are di. Note that q is the number of non-zero weights and that it is even. What

should we do then? It is quite evident that in order to minimize the function we should

weigh the biggest values with negative weights, whereas we should weigh the smallest values

with positive ones. This is precisely what the lemma says: order the values wi in decreasing

order, associate di = −1 to the first q
2 of these (i.e. the biggest) and di = +1 to the last

q
2 (i.e. the smallest). It is less clear that the q non-zero weights should be ±1, but this is

also shown to be true in [23].

Now let us check problem (4.3.4): the function to be minimized is also a weighted

sum, where wi = (Kα)i. Moreover, this time the vector d describes also the descent

direction to be chosen. We know from previous considerations that CH-MDM only implies

two patterns that must belong to the same class, so in the context of the lemma q = 2.

Whichever two patterns we do choose, the constraints
∑N

i=1 yidi = 0 and
∑N

i=1 di = 0

become thus equivalent, so the only difference between problem (4.3.4) and the one stated

in the lemma with q = 2 is that the vector d is more constrained. Despite this difference,

we can state the following result:

Theorem 3 CH-MDM is a feasible direction method, since it chooses at each step the

optimizing direction by applying Zoutendijk’s method to the dual (2.5.2). Furthermore,

this direction causes the steepest possible descent as a result of taking just two non-zero

components.

Proof We have proved above that (4.3.4) must be solved so as to find the best descent

direction for the dual (2.5.2). It is trivial to note that, in order to satisfy
∑N

i=1 di = 0, there

must be a negative di and a positive dj . Assume for a moment that −1 ≤ d ≤ +1 ∀i. The

above lemma for q = 2 then says: order the values to be weighed, weigh the smallest value

with −1 and the biggest one with +1.

With that assumption (4.3.4) would be solved by choosing di = −1 and dj = +1, where

xi = argmaxxk
{(Kα)k} and xj = argminxk

{(Kα)k}. This is also seen with an analytic

argument; the function to be minimized is:

F = (Kα)i di + (Kα)j dj

= di

(
(Kα)i − (Kα)j

)
= dj

(
(Kα)j − (Kα)i

)
.
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Thus ∂F
di

=
(

(Kα)i − (Kα)j
)

. Since we have said that di < 0, we need to maximize(
(Kα)i − (Kα)j

)
> 0 so that the slope indicated by the derivative is as descending as

possible. Conversely, dj > 0, so we need to minimize
(

(Kα)j − (Kα)i
)
< 0. This is

obviously done by taking xi and xj as stated in the previous paragraph.

Rewriting

(Kα)k =
N∑
m=1

αmKmk =
∑
m∈SV

αmKmk = yk
∑
m∈SV

αmymxm · xk = ykw · xk,

gives xj = argmink (ykw · xk). Note that setting dj = +1 does not violate any constraint

in (4.3.4) since the upper bound in the direction component is always +1.

Now we have to decide about xi. Noting that this time in (4.3.4) only support vectors can

carry a negative di, it is not possible that xi = argmaxk (ykw · xk), as the lemma states.

Instead, we need to restrict that xi ∈ SV so that the direction remains feasible, hence

xi = argmaxxk | αk>0 (ykw · xk).

Thus, following the spirit of lemma 2 and taking into account the additional constraints

not covered in it, yields xi and xj as defined above. Forcing both points to belong to the

same class by using one of the possibilities in section §4.1.2 clearly yields the points xU

and xL used in CH-MDM, respectively.

Therefore, the optimal direction to minimize F is d∗ = λ∗ (xL − xU). Finally, we see that

λ∗ = 1, because if we took dj = +λ and di = −λ for some 0 < λ ≤ 1, we would get

F = λ
(

(Kα)j − (Kα)i
)

. As we are interested in minimizing this value and the difference

is by definition constant and negative, we would like to maximize λ, yielding the upper

bound for it λ∗ = 1. This is the same direction that CH-MDM takes in algorithm 1.

4.3.1 Relationship between CH-MDM and SVM-Light

Recall from section §3.1.2 that SVM-Light, like SMO, solves the dual of the soft-margin

1-SVM formulation (2.3.2), so we have to take C =∞. The following corollary to theorem

3 is immediate:

Corollary 1 Assume that SVM-Light is set to work with q = 2 and no shrinking. If the

two patterns chosen by SVM-Light belong to the same class, i.e. y1 = y2, then the descent

directions used by SVM-Light and CH-MDM are identical.

Proof The best coefficients are again assumed to be α1 and α2. The fact that C = ∞
makes SVUB = φ in problem (3.1.6), which is solved by SVM-Light to find its best direction.

Besides, the fact that y1 = y2 causes that the problem’s constraint y · d = 0 becomes
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∑N
i=1 di = 0. Thus, (3.1.6) becomes (4.3.4). The previous proof establishes that the best

direction then is the one used by CH-MDM.

Note that it is guaranteed in this case that x1 = xU and x2 = xL because SVM-Light

applies lemma 2 to solve (3.1.6) in the same spirit that in the previous proof, that is, using

it to know how x1 and x2 should be chosen, and then using the additional constraints to

restrict that choice.

Besides, if we use as stopping criterion for CH-MDM the one based on the KKT con-

ditions (section §4.1.3) we will be stopping with the same criterion than SVM-Light, but

applied to the relaxed conditions (2.5.4)–(2.5.7) instead of (3.1.1)–(3.1.3) as a result of

considering C =∞ and the rescaling of (2.1.2) to (2.5.2).



Chapter 5

Experimental Results

In this chapter we show experimentally some of the results obtained in the previous chapter

about CH-MDM. Specifically, our aim is to study the performances of CH-MDM, Keerthi’s

modification 2 for SMO (cf. §4.2.1) and SVM-Light (cf. §3.1.2). We claimed in §4 that

the three algorithms should behave very similarly if both SMO and SVM-Light are made

to solve the 2-SVM dual problem (2.4.2) by means of making C = ∞ in the 1-SVM

formulation. Recall that CH-NPP (2.5.2) is a rescaling of (2.4.2), so after CH-MDM solves

CH-NPP, its solution should be the same than the one obtained with SMO and SVM-Light

solving (2.4.2), once the rescaling is applied.

However, making C = ∞ not only provokes that the 1-SVM dual becomes the 2-SVM

dual, but also causes that both problems become the hard-margin dual (2.1.2), because

slack variables are infinitely penalized, so no classification errors are allowed. Therefore, if

for some dataset the patterns are not linearly separable even with the use of kernels, the

performances can be really poor. Thus, for the sake of completeness and good performances,

we would like to compare somehow the 1-SVM and 2-SVM solutions separately, while at

the same time confirming that the three algorithms have a strong relationship.

For the reasons above we adopt the following strategy: firstly, we adapt Keerthi’s

modification 2 for SMO to solve directly for the 2-SVM dual (henceforth this adaptation

is referred to as 2-SMO). This is simple enough, since basically what has to be done is to

modify the kernel to be k (xi,xj) + δij
C , and to consider the hard-margin KKT conditions

(2.1.4) and (2.1.5) instead of the 1-SVM ones (2.3.4)–(2.3.6) while selecting the multipliers

α1 and α2. Once the algorithm is adapted, CH-MDM and SMO can be properly compared

in §5.2. Secondly, we do not modify SVM-Light nor set it to work with C = ∞. In this

way, the solutions for 1-SVM and 2-SVM can be compared in §5.3 in a best-model fashion.

Moreover, by making use of Keerthi’s modification of SMO in its original form (referred to

as 1-SMO) we are able to show that SVM-Light (with q = 2 and no shrinking) and 1-SMO

33
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are indeed the same algorithm, without using CH-MDM to put them into relationship. We

have seen this last fact to be already known in another work whose existence we were not

aware of at the time of this writing [8].

5.1 Datasets and test methodology

Before analyzing the results, we describe here the datasets and the test methodology

used. Gaussian kernel support vector machines are employed, in order to deal with non-

separability. We use 10 datasets taken from [24]: titanic, heart, diabetes, breast cancer,

thyroid, flare-solar, splice, image, german and banana. All these datasets, except for ba-

nana, were originally taken from the UCI repository [25] and have been widely used as

benchmark problems in the literature. Besides, in [24] each of these datasets is randomly

partitioned into 100 different training-test pairs (except for image and splice, for which

only 20 partitions are available), a fact that is very useful for our comparison purposes.

Moreover, values C and σ are given for the 1-SVM formulation that result in good perfor-

mance in terms of accuracy. These parameters are the ones 1-SMO and SVM-Light work

with in §5.3.

The algorithms are compared over three different measures: accuracy of the final model

in terms of error percentage, number of support vectors the SVMs have, and number

of iterations needed to construct them. These are implementation-independent measures

that also assess the quality of the model obtained (an iteration is to be understood as

an optimization over two multipliers α1 and α2). It will be seen that, depending on the

comparison, the stopping criteria are chosen differently for practical reasons. Once the

measures are obtained for every dataset partition, Wilcoxon paired rank-sum tests in native

R [26] are performed to see if there are statistically significant (at a 10% level) similarities

and/or differences among the three algorithms. The rest of the implementation is written

in C; the code for SVM-Light is the one written by Joachims and publicly available in [27],

whereas the two versions of SMO are implemented from scratch, following the lines of the

CH-MDM algorithm.

5.2 2-SMO versus CH-MDM

In this section we compare the performance of 2-SMO and CH-MDM with the parameter

values C = 10 and 2σ2 = 50. While these are not optimal parameters, they give reasonable

test accuracies and, therefore, are adequate enough for the comparisons made. Concerning

the stopping criteria to be used, it has to be noted that no criterion from the geometry-
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based ones listed in §4.1.3 can in principle be used, since 2-SMO is solving for the 2-SVM

dual, which does not have a direct geometric interpretation. Besides, the vectors w(t) are

different in both algorithms. Hence, it is convenient to choose a valid criterion aside from

geometry. A possibility is observing that both problems are minimizing a dual; thus we

can stop when the relative change in the duals is less than a tolerance ε. Specifically, this

means for 2-SMO when W
(
α(t)
)
−W

(
α(t+1)

)
≤ εW

(
α(t)
)
, where W (α) is defined as in

(2.4.2), and for CH-MDM when ‖w(t)‖2 − ‖w(t+1)‖2 ≤ ε‖w(t)‖2.

Considering the derivations in [7] and in §4.2, it can be shown that if we want this

version of SMO to update the coefficients in a similar way than CH-MDM (cf. algorithm

1), we have to redefine the ”margins”, the selection of x1 and x2 and the definition of ∆

in the following way (from now on x1 and x2 will be referred to as xU and xL for analogy

with CH-MDM):

m (xi) = w · xi − yi, (5.2.1)

xL = argminxi | i ∈ SV ∪(NSV ∩I1) {m (xi)} , (5.2.2)

xU = argmaxxi | i ∈ SV ∪(NSV ∩I2) {m (xi)} , (5.2.3)

∆ = m (xU)−m (xL) . (5.2.4)

We see from theorem 1 and the definitions above that the updates in 2-SMO are of the

form αnewL = αoldL + yL
∆

‖xL−xU‖2 and αnewU = αoldU + yUyL
(
αoldL − αnewL

)
, since EU − EL =

m (xU)−m (xL) = ∆. As 2-SMO is not restrained to have yU = yL, there are four possible

update cases depending on their values, not only two as happened with CH-MDM.

There are two further differences between both algorithms: the initialization and the

bias calculation. The initialization in SMO can be arbitrary as long as
∑

i αiyi = 0; we

decided to implement 2-SMO so that it starts with two index choices for α1 = 1 and α2 = 1

such that y1 6= y2, in order to have two support vectors from different classes (note that

these values could be used as well to initialize CH-MDM). On the other hand, the bias is

calculated by solving for the KKT condition (2.1.4) and taking for robustness the mean for

all support vectors, as in the original SMO [6].

All the discussions above yield the following pseudocode, where the notation is the same

as in CH-MDM algorithm 1. Observe now that the cuts for λ depend on which case we

are dealing with, since λ can be subtracted from just αU , just αL, both or neither of them.

Note as well that, as it stands, this pseudocode deals with the hard-margin SVM. In order

to cope with a 2-SVM, the only modification is to substitute, as in CH-MDM, the inner

products xi · xj for k (xi,xj) + δij
C , applying what was stated in §2.4. The calculation of

the bias would still be valid, for the hard KKT condition (2.1.4) becomes the 2-SVM KKT
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condition (2.4.4).

Algorithm 2 2-SMO algorithm for binary SVMs
1: Choose arbitrarily L,U so that yL 6= yU and set αL = αU = 1, αi = 0 ∀i 6= L,U .

2: Calculate A,B,C as well as Di, Ei ∀i.
3: loop

4: Set xL = argminxi | i ∈ SV ∪(NSV ∩I1) {m (xi)}.
5: Set xU = argmaxxi | i ∈ SV ∪(NSV ∩I2) {m (xi)}.
6: Set ∆ = m (xU)−m (xL).

7: if stop criterion is true then

8: Return w =
∑

i∈SV αiyixi, b = 1
|SV |

∑
i∈SV (yi −w · xi).

9: end if

10: Set F = ‖xL − xU‖2, λ = ∆
F .

11: if U,L ∈ I1 then

12: λ⇐ min {λ, αU}
13: A⇐ A+ λ (2 (DL −DU ) + λF ), C ⇐ C + λ (EL − EU )

14: Di ⇐ Di + λ (xi · xL − xi · xU) ∀i
15: αL ⇐ αL + λ, αU ⇐ αU − λ
16: else if U,L ∈ I2 then

17: λ⇐ min {λ, αL}
18: B ⇐ B + λ (2 (EU − EL) + λF ), C ⇐ C + λ (DU −DL)

19: Ei ⇐ Ei + λ (xi · xU − xi · xL) ∀i
20: αL ⇐ αL − λ, αU ⇐ αU + λ

21: else if U ∈ I2, L ∈ I1 then

22: A ⇐ A + λ (2DL + λxL · xL), B ⇐ B + λ (2EU + λxU · xU), C ⇐ C +

λ (EL +DU + λxL · xU)

23: Di ⇐ Di + λxi · xL ∀i, Ei ⇐ Ei + λxi · xU ∀i
24: αL ⇐ αL + λ, αU ⇐ αU + λ

25: else

26: λ⇐ min {λ, αL, αU}
27: A ⇐ A + λ (−2DU + λxU · xU), B ⇐ B + λ (−2EL + λxL · xL), C ⇐ C +

λ (−EU −DL + λxL · xU)

28: Di ⇐ Di − λxi · xU ∀i, Ei ⇐ Ei − λxi · xL ∀i
29: αL ⇐ αL − λ, αU ⇐ αU − λ
30: end if

31: end loop
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Two different tolerances are used: ε = 0.001 and ε = 0.00001, whose respective results

are given in tables 5.2.1 and 5.2.2. Let us first analyze table 5.2.1. In its results two

facts are immediately noticeable and true for every dataset: CH-MDM gives models with

significantly less support vectors than 2-SMO (except for banana), whereas 2-SMO requires

significantly less iterations than its counterpart. This comes as no surprise: 2-SMO logically

requires less iterations since the search for the two indices is not restrained by the condition

yU = yL: therefore, the progress that 2-SMO makes in its dual is as large as the one in

CH-MDM if that condition is fulfilled, and it is larger if the two patterns do not belong to

the same class, because it is guaranteed that xU and xL constitute the KKT most violating

couple.

However, CH-MDM arrives to SVM models with less number of support vectors. This

somewhat makes up for the slower speed of this algorithm, as these are implicitly simpler

models, whose predictions are faster; for every prediction there is one kernel operation per

support vector, see (3.1.4). This fact is also easy to explain: CH-MDM is designed to

get rid of unnecessary support vectors, by taking λ = αU in line 16 of algorithm 1, and

consequently updating with αU = 0. On the other hand, 2-SMO chooses λ depending of

the case in algorithm 2; it is more difficult that this choice gets rid of a support vector, not

only because this time there are three possible values for λ, but also because there are four

different possible updates as a result of the freedom in choosing αL and αU . Eliminating

mistaken support vectors in 2-SMO is a subproduct of the method, its main objective being

optimizing its dual as much as possible.

Finally, the accuracy is generally better for 2-SMO; it beats CH-MDM in 6 datasets,

whereas in the remaining 4 datasets both methods are statistically similar. Both algorithms

are expected to yield the same solution if run indefinitely, as a consequence of the SVM

solution uniqueness, so these divergences are conjectured to happen due to the tolerance

level not being accurate enough. Since 2-SMO converges faster, it is logical to think that

at this slightly inaccurate precision it gives better models than CH-MDM.

At this point it is useful to ascertain the validity of this surmise by having a look at

table 5.2.2, where the tolerance level is 100 times more accurate. As it can be seen, the

error percentages become much more similar: there are still significant differences in 5 of

the datasets (4 for 2-SMO and 1 for CH-MDM), yet the difference in the means is not

greater than 0.2%. This, together with the fact that the number of support vectors has

also become almost equal in both methods, makes it clear that they are converging to the

same optimal model. 2-SMO continues to converge significantly faster for all the datasets

because of the aforementioned freedom in coefficient choices, so it seems to be a better

algorithm than CH-MDM (at least for the chosen values for C and σ): if the precision is
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Dataset ERR. MDM ERR. 2-SMO SVs MDM SVs 2-SMO IT. MDM IT. 2-SMO

Titanic 22.8±0.9 22.7±0.71 121.5±12.71 129.1±12.9 151.5±17.1 113.5±14.61

Heart 19.5±3.2 19.1±3.11 92.7±7.11 97.7±7.1 133.8±14.9 117.0±9.71

Diabetes 25.8±2.5 25.1±2.21 290.2±14.71 315.4±11.1 343.6±24.5 283.1±21.21

Cancer 27.9±4.9 26.4±4.61 152.1±6.71 160.1±6.8 204.2±10.9 172.2±11.51

Thyroid 7.3±2.8 7.1±2.6 64.2±8.41 67.6±7.6 76.2±10.2 59.7±7.21

Flare 38.9±5.5 37.6±5.71 385.2±74.21 420.1±80.8 405.5±76.3 267.9±56.81

Splice 11.0±0.7 11.0±0.6 436.8±8.81 488.6±11.8 435.6±9.1 266.0±6.81

Image 8.7±1.8 9.3±3.1 352.8±28.61 387.5±70.4 378.1±36.8 259.3±59.11

German 26.4±2.6 25.2±2.21 383.2±14.41 446.3±16.8 436.9±24.8 368.5±27.01

Banana 40.9±6.3 40.8±5.9 386.6±11.7 387.1±13.6 391.3±13.4 236.8±15.41

Table 5.2.1: Average test accuracies, number of support vectors and number of iterations given

by the CH-MDM and 2-SMO algorithms, with ε = 0.001. A 1 stands for a statistically significant

difference in the paired samples.

high it converges faster and gives equivalent models than those of CH-MDM, whereas if it is

low it converges very quickly and the accuracy of the models makes up for their somewhat

bigger complexity.

Dataset ERR. MDM ERR. 2-SMO SVs MDM SVs 2-SMO IT. MDM IT. 2-SMO

Titanic 22.6±0.7 22.6±0.7 149.0±2.4 149.1±2.3 292.2±18.6 238.2±14.91

Heart 19.0±3.1 18.9±3.11 105.7±8.51 106.1±8.2 308.1±33.5 278.3±27.11

Diabetes 24.0±1.9 23.9±1.81 373.6±9.31 374.3±9.9 940.8±67.7 817.4±66.31

Cancer 27.1±4.8 26.9±4.81 174.9±6.41 175.4±6.4 485.1±42.8 432.6±31.41

Thyroid 7.2±2.5 7.2±2.5 96.7±10.31 97.2±10.1 148.3±14.9 130.8±12.11

Flare 34.3±1.7 34.5±1.8 576.6±6.4 573.4±10.61 1264.3±83.1 858.5±187.81

Splice 10.7±0.71 10.8±0.7 724.7±12.8 711.7±32.21 957.0±35.2 655.2±89.91

Image 6.0±0.8 6.0±0.8 576.3±43.7 577.5±27.1 1253.3±190.9 907.7±178.41

German 24.6±2.2 24.5±2.21 530.8±15.01 535.7±13.4 1417.3±129.6 1244.8±107.21

Banana 34.8±4.0 34.7±3.5 399.6±0.8 399.6±0.9 751.5±18.5 624.6±18.31

Table 5.2.2: Average test accuracies, number of support vectors and number of iterations given

by the CH-MDM and 2-SMO algorithms, with ε = 0.00001. A 1 stands for a statistically significant

difference in the paired samples.

5.3 1-SVM versus 2-SVM

As it has been said before, here we seek to compare the performance of 1-SVM and 2-

SVM models over the different datasets we work with. 1-SVM models are trained both

with SVM-Light (using the code in [27] without any change) and 1-SMO, whereas 2-SVM

are trained both with CH-MDM and 2-SMO. Although this sort of comparison does not
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enlighten experimentally the relationship between SVM-Light and 1-SMO with CH-MDM

(in order to do such a thing, we would have either to modify the code of SVM-Light to

cover the 2-SVM case –something that in theory only implies changing the kernel function

and setting C =∞, but that is more complicated at code level– or to implement CH-MDM

for 1-SVM –it would become RCH-MDM; recall that coming up with a proper RCH-MDM

is still an open problem–), it is useful under three points of view: it allows us to keep on

comparing CH-MDM and 2-SMO with different values for C and σ from those in section

§5.2, it is as well designed to show the connection between 1-SMO and SVM-Light per se

and, most importantly, to compare the performances of both SVM paradigms in a best-

model fashion, i.e., with the best choice of parameters for each paradigm (or at least a very

convenient one in terms of final accuracy).

Concentrating on the last point, there has been controversy in the literature about

which paradigm is better: 1-SVM or 2-SVM. For instance, an advantage of 2-SVM that we

have already seen is that it can be transformed to a hard-margin SVM, so every algorithm

designed for solving CH-NPP can be applied to 2-SVM and to hard-SVM, whereas the

geometric interpretation of 1-SVM is RCH-NPP, which is a much harder problem to solve

(especially if we want to use kernels and the only operations available between patterns

are inner products). Besides, 1-SVM can by no means be transformed into an instance of

hard-SVM. However, 1-SVM has been claimed to be better than 2-SVM when redundant

noise features are present [28].

Regarding the parameter values, it is clear that an optimal choice for C and σ for 1-

SVM would be suboptimal for 2-SVM, and vice versa. Therefore, it is not possible to fix

their values in advance as in the previous experiments. To overcome this, the values for

1-SVM are the ones that [24] uses, which are shown to result in pretty good models. As for

the 2-SVM case, we have not been able to find a paper with suggestions for the datasets at

hand, so we use here the results obtained in [29] after running the well-known evolutionary

strategy CMA-ES [30] (whose publicly available code can be downloaded from [31]) over

50 generations. The function to be optimized by CMA-ES is the average test error over

a 5-fold cross-validation of the 5 first training partitions of the datasets. This is a similar

function to the one used to get the parameter values in [24], but take into account that we

perform a continuous search in the parameter space with CMA-ES, whereas Rätsch carries

out a discrete one by means of a grid. The final parameter choices are shown in table 5.3.1.

Let us now describe 1-SMO. With a similar reasoning to that for 2-SMO [7] it is easy

to arrive to the following equations:
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Dataset C 1-SVM σ 1-SVM C 2-SVM σ 2-SVM

Titanic 5.00 2.00 0.46 35.08

Heart 3.16 120.00 0.41 77.39

Diabetes 1.00 20.00 34.72 620.20

Cancer 15.19 50.00 9.90 62.48

Thyroid 10.00 3.00 0.82 1.00

Flare 1.02 30.00 4.23 2558.07

Splice 1000.00 70.00 114.69 50.44

Image 500.00 30.00 742.73 28.24

German 3.16 55.00 780.4 1443.53

Banana 316.20 1.00 2.60 1.40

Table 5.3.1: C and σ values used in the comparison between the models obtained for the 1-SVM

and 2-SVM formulations.

xL = argminxi | i ∈ SV NUB∪(SV UB∩I2)∪(NSV ∩I1) {m (xi)} , (5.3.1)

xU = argmaxxi | i ∈ SV NUB∪(SV UB∩I1)∪(NSV ∩I2) {m (xi)} , (5.3.2)

where m (xi) is defined as in (5.2.1). The other difference is that now we have to comply

with the constraints αi ≤ C. Thus, λ has to be cut always looking at two different quantities

apart from itself, depending on which one of the four cases we are coping with. These two

differences give then rise to the following algorithm:

Next we discuss which stopping criteria to use. Since we have not changed the code

for SVM-Light the choice is obviously influenced by what this algorithm does; recall from

§3.1.2 that it checks for the relaxed 1-SVM KKT conditions (3.1.1)–(3.1.3). Therefore, for

the sake of similarity, CH-MDM has to be stopped when ∆ ≤ 2ε, with ∆ defined in (4.1.3),

since we showed in §4.1.3 that, by doing this, it is guaranteed that the relaxed 2-SVM KKT

conditions are fulfilled with an absolute tolerance ε, that is, the same that SVM-Light does

for 1-SVM.

Moreover, it is not difficult to show that stopping 2-SMO and 1-SMO with the same

criterion ∆ ≤ 2ε, but with ∆ defined in (5.2.4), has the same consequence. We consider

here the 2-SMO case. From the definition of ∆ and equations (5.2.1)–(5.2.3) we have:

∆ = w · (xU − xL)− (yU − yL)

= maxi | i ∈ SV ∪(NSV ∩I2) {w · xi − yi} −mini | i ∈ SV ∪(NSV ∩I1) {w · xi − yi} .

Since the relaxed KKT conditions can be summarized in the following equation [7]:
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Algorithm 3 1-SMO algorithm for binary SVMs
1: Choose arbitrarily L,U so that yL 6= yU and set αL = αU = 1, αi = 0 ∀i 6= L,U .

2: Calculate A,B,C as well as Di, Ei ∀i.
3: loop

4: Set xL = argminxi | i ∈ SV NUB∪(SV UB∩I2)∪(NSV ∩I1) {m (xi)}.
5: Set xU = argmaxxi | i ∈ SV NUB∪(SV UB∩I1)∪(NSV ∩I2) {m (xi)}.
6: Set ∆ = m (xU)−m (xL).

7: if stop criterion is true then

8: Return w =
∑

i∈SV αiyixi, b = 1
|SV |

∑
i∈SV (yi −w · xi).

9: end if

10: Set F = ‖xL − xU‖2, λ = ∆
F .

11: if U,L ∈ I1 then

12: λ⇐ min {λ,C − αL, αU}
13: A⇐ A+ λ (2 (DL −DU ) + λF ), C ⇐ C + λ (EL − EU )

14: Di ⇐ Di + λ (xi · xL − xi · xU) ∀i
15: αL ⇐ αL + λ, αU ⇐ αU − λ
16: else if U,L ∈ I2 then

17: λ⇐ min {λ, αL, C − αU}
18: B ⇐ B + λ (2 (EU − EL) + λF ), C ⇐ C + λ (DU −DL)

19: Ei ⇐ Ei + λ (xi · xU − xi · xL) ∀i
20: αL ⇐ αL − λ, αU ⇐ αU + λ

21: else if U ∈ I2, L ∈ I1 then

22: λ⇐ min {λ,C − αL, C − αU}
23: A ⇐ A + λ (2DL + λxL · xL), B ⇐ B + λ (2EU + λxU · xU), C ⇐ C +

λ (EL +DU + λxL · xU)

24: Di ⇐ Di + λxi · xL ∀i, Ei ⇐ Ei + λxi · xU ∀i
25: αL ⇐ αL + λ, αU ⇐ αU + λ

26: else

27: λ⇐ min {λ, αL, αU}
28: A ⇐ A + λ (−2DU + λxU · xU), B ⇐ B + λ (−2EL + λxL · xL), C ⇐ C +

λ (−EU −DL + λxL · xU)

29: Di ⇐ Di − λxi · xU ∀i, Ei ⇐ Ei − λxi · xL ∀i
30: αL ⇐ αL − λ, αU ⇐ αU − λ
31: end if

32: end loop
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max
i | i ∈ SV ∪(NSV ∩I2)

{w · xi − yi} − ε ≤ b ≤ min
i | i ∈ SV ∪(NSV ∩I1)

{w · xi − yi}+ ε,

it is clear that in order to fulfil this we need ∆ ≤ 2ε. Thus, we have a criterion which is

equivalent in spirit for the four algorithms (but not very convenient, as will be seen soon).

As before, we compare them in terms of error percentage, number of support vectors and

number of iterations with two different tolerances ε = 0.001 and ε = 0.00001. The results

for ε = 0.001 are given in tables 5.3.2, 5.3.3 and 5.3.4.

Several aspects can be pointed out from these three tables. First, it is clear that for

some datasets such as diabetes, image and german the 0.001 accuracy is very inaccurate for

CH-MDM, since it gives bad error rates and too few iterations and SVs while compared to

2-SMO. Nevertheless, for 2-SMO, 1-SMO and SVM-Light it seems to be accurate enough:

observe that their error rates are similar for all the datasets, and at least as low as those

of CH-MDM.

Secondly, the parameter choice is quite convenient, because comparing the rates of 2-

SMO with those in table 5.2.2, they are better for most of the cases (sometimes they are

slightly worse, but this can be due to the different stopping criterion).

Thirdly, the observation of the previous section that CH-MDM gives less SVs than 2-

SMO is still valid, even for the datasets in which CH-MDM does not stop too early, whereas

it is interesting to see that now 2-SMO always carries out more iterations than CH-MDM,

which seems to contradict the impression we had that 2-SMO should be faster because

of its being less restricted. However, this fact is related to the CH-MDM’s inaccuracy

we observed above: the vectors w(t) are different in 2-SMO and CH-MDM, so an absolute

stopping criterion such as the one we are using gives different results, as it is less demanding

for one method than for the other one. In this particular case, for 2-SMO it is much more

demanding than for CH-MDM. Unless ε is small enough, an absolute stopping criterion is

subject to early stopping and is case-dependent. Therefore, a relative criterion should be

used if possible.

Furthermore, we obtain very similar results for 1-SMO and SVM-Light in the three

measures, as expected. Interestingly, 1-SMO is slightly better than SVM-Light, since it has

the same accuracies, but gives a bit less support vectors and requires a few less iterations.

Without having delved into the details of the SVM-Light code, we think that this fact is

due to SVM-Light using an interior-point solver [15] for the general case where q is even.

In the particular case of q = 2, this solver is less accurate than 1-SMO because it may not

solve the task analytically.

Last but not least, comparing 1-SMO and SVM-Light with the other two algorithms,
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their error rates are similar and they obtain models with many less SVs than both 2-

SMO and CH-MDM (CH-MDM gives less SVs only in the datasets for which it stops too

early, whereas 2-SMO always gives more SVs than 1-SMO and SVM-Light). In terms of

iterations, sometimes they are faster than 2-SMO, whereas sometimes it is the other way

round. The comparison with CH-MDM is left for the more accurate tolerance.

Dataset ERR. MDM ERR. 2-SMO ERR. 1-SMO ERR. SVM-LIGHT

Titanic 22.8±1.2 22.8±1.2 22.4±1.03 22.4±1.03

Heart 15.8±3.3 15.8±3.3 15.9±3.2 15.9±3.2

Diabetes 39.1±9.9 23.2±1.71,3 23.5±1.7 23.5±1.7

Cancer 27.5±5.0 26.5±4.91 26.3±4.6 26.3±4.6

Thyroid 4.3±1.9 4.4±1.9 4.4±2.2 4.4±2.2

Flare 44.4±3.2 33.5±1.71 32.8±1.73 32.8±1.73

Splice 10.7±0.7 10.6±0.73 10.8±0.6 10.8±0.6

Image 16.3±10.8 2.9±0.51,3 3.1±0.5 3.1±0.5

German 44.4±8.6 23.6±2.11 23.6±2.2 23.6±2.2

Banana 10.4±0.53 10.4±0.53 11.6±0.7 11.6±0.7

Table 5.3.2: Average test accuracies given by the CH-MDM, 2-SMO, 1-SMO and SVM-Light

algorithms, with ε = 0.001. A superindex stands for a statistically significant difference in the

paired samples; 1 for those of CH-MDM and 2-SMO, 2 for those of 1-SMO and SVM-Light, and
3 for those of the best one between CH-MDM and 2-SMO and the best one between 1-SMO and

SVM-Light.

Dataset SVs MDM SVs 2-SMO SVs 1-SMO SVs SVM-LIGHT

Titanic 150.0±0.0 150.0±0.0 68.6±9.52,3 68.9±9.6

Heart 161.8±2.91 163.3±2.4 82.5±5.43 82.5±5.43

Diabetes 80.1±4.11,3 412.7±7.7 264.9±7.4 265.0±7.3

Cancer 152.6±5.91 179.4±5.9 114.1±6.13 114.1±6.03

Thyroid 86.6±3.21 87.4±3.1 25.3±5.73 25.3±5.73

Flare 321.3±20.81,3 664.6±0.8 477.1±12.12 478.2±12.1

Splice 538.8±19.51,3 727.8±12.5 620.1±14.42 620.7±14.7

Image 100.0±15.81,3 215.3±11.5 167.6±9.12 172.1±9.6

German 16.6±2.91,3 590.2±12.5 407.6±10.8 407.6±10.8

Banana 211.4±12.01 230.8±14.1 89.6±10.23 89.5±10.23

Table 5.3.3: Average number of support vectors given by the CH-MDM, 2-SMO, 1-SMO and

SVM-Light algorithms, with ε = 0.001. A superindex stands for a statistically significant difference

in the paired samples; 1 for those of CH-MDM and 2-SMO, 2 for those of 1-SMO and SVM-Light,

and 3 for those of the best one between CH-MDM and 2-SMO and the best one between 1-SMO

and SVM-Light.

In order to confirm or refute the appreciations of the results in the previous tables, we

show next the results for ε = 0.00001 in tables 5.3.5, 5.3.6 and 5.3.7.
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Here we see that this new tolerance is accurate enough for CH-MDM, since very similar

values appear in the error and SV columns for CH-MDM and 2-SMO, like in table 5.2.2.

Clearly both methods are converging to the same model (with the only exception of dataset

german, where even this ε does not seem to be enough for CH-MDM. As was stated above,

the accuracy of a given ε is case-dependent whenever an absolute criterion is used.). 1-SMO

and SVM-Light are also converging to the same model (which is the same than the one

in the previous tables, since the values are almost identical), and 1-SMO keeps on being

slightly better than its counterpart.

It is also evident that not only the values for 1-SMO and SVM-Light in tables 5.3.2,

5.3.5, 5.3.3 and 5.3.6 are nearly identical, but also for 2-SMO, so this confirms our suspicion

that ε = 0.001 is accurate enough for these three methods. For SVM-Light Joachims also

concluded this fact in [15], the only effect of reducing ε being a remarkable increase in the

number of iterations, as we can see if we compare tables 5.3.4 and 5.3.7.

The parameter choices for 2-SVM give better error rates that those in table 5.2.2 (except

for datasets titanic and flare), so these choices made by CMA-ES are not optimal but

remarkably good, because the rates are similar to those obtained for 1-SVM with the

values suggested by [24].

Comparing the speed of 2-SMO and CH-MDM, in table 5.3.7 it looks like CH-MDM

is faster, as we mentioned for table 5.3.4. However, this comparison is not fair, because

2-SMO with ε = 0.001 achieves a similar accuracy than CH-MDM with ε = 0.00001. If we

compare then, column 3 of table 5.3.4 and column 2 of table 5.3.7, it is not clear which of the

algorithms is faster: CH-MDM wins for datasets diabetes, cancer, splice, image, german and

banana, whereas SMO wins for titanic, heart, thyroid and flare (take into account that for

german and perhaps for image ε should be lower for CH-MDM). However, several facts can

influence in these results: it is possible that with ε > 0.001 2-SMO still gives good results

for the datasets where CH-MDM seems to beat it. Besides, it may happen that CH-MDM

arrives to two points which are not the closest ones in the hulls, but that nonetheless form

by chance a w with the proper orientation, causing that the KKT conditions are fulfilled

in advance.

Finally, comparing 1-SMO and SVM-Light versus the other two, table 5.3.6 confirms

that 1-SVM manages to give models with less SVs than 2-SVM. Moreover, looking at table

5.3.7 for its iterations, it also turns out to be in general faster than 2-SMO, but not always

(note that the datasets for which it is slower are the same that those in table 5.3.4).
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Dataset IT. MDM IT. 2-SMO IT. 1-SMO IT. SVM-LIGHT

Titanic 228.1±8.71 284.6±17.1 144.3±21.82,3 148.7±25.0

Heart 214.7±7.31 253.5±8.8 149.5±30.92,3 154.0±33.6

Diabetes 78.3±4.21,3 1255.4±32.3 359.5±54.02 374.7±55.4

Cancer 194.3±8.41,3 887.4±42.1 1434.8±403.32 1485.5±395.9

Thyroid 130.0±4.71,3 158.7±8.0 213.0±73.92 225.7±76.8

Flare 319.4±20.81,3 1158.3±42.5 615.3±153.32 638.8±192.8

Splice 559.1±16.21,3 2716.1±323.5 2017.8±161.5 2032.6±116.2

Image 194.7±43.01,3 36498.9±2344.3 56239.3±13048.22 61237±13282.8

German 15.3±3.21,3 19462.7±665.4 1359.5±102.92 1394.8±104.7

Banana 318.5±16.61,3 991.7±66.3 41899.8±17406.62 44201.9±19379.7

Table 5.3.4: Average number of iterations given by the CH-MDM, 2-SMO, 1-SMO and SVM-

Light algorithms, with ε = 0.001. A superindex stands for a statistically significant difference in

the paired samples; 1 for those of CH-MDM and 2-SMO, 2 for those of 1-SMO and SVM-Light, and
3 for those of the best one between CH-MDM and 2-SMO and the best one between 1-SMO and

SVM-Light.

Dataset ERR. MDM ERR. 2-SMO ERR. 1-SMO ERR. SVM-LIGHT

Titanic 22.8±1.2 22.8±1.2 22.4±1.03 22.4±1.03

Heart 15.8±3.3 15.8±3.3 15.9±3.2 15.9±3.2

Diabetes 23.2±1.73 23.2±1.73 23.5±1.7 23.5±1.7

Cancer 26.5±4.9 26.5±4.9 26.3±4.6 26.3±4.6

Thyroid 4.4±1.9 4.4±1.9 4.4±2.2 4.4±2.2

Flare 33.5±1.7 33.5±1.7 32.8±1.73 32.8±1.73

Splice 10.6±0.73 10.6±0.73 10.8±0.6 10.8±0.6

Image 3.0±0.5 2.9±0.53 3.1±0.5 3.1±0.5

German 27.7±3.5 23.6±2.11 23.6±2.2 23.6±2.2

Banana 10.4±0.53 10.4±0.53 11.6±0.7 11.6±0.7

Table 5.3.5: Average test accuracies given by the CH-MDM, 2-SMO, 1-SMO and SVM-Light

algorithms, with ε = 0.00001. A superindex stands for a statistically significant difference in the

paired samples; 1 for those of CH-MDM and 2-SMO, 2 for those of 1-SMO and SVM-Light, and
3 for those of the best one between CH-MDM and 2-SMO and the best one between 1-SMO and

SVM-Light.
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Dataset SVs MDM SVs 2-SMO SVs 1-SMO SVs SVM-LIGHT

Titanic 150.0±0.0 150.0±0.0 68.6±9.52,3 69.1±9.6

Heart 163.4±2.4 163.4±2.4 82.5±5.43 82.5±5.43

Diabetes 407.2±7.41 412.8±7.7 264.9±7.33 264.9±7.33

Cancer 179.2±5.91 179.4±5.9 113.9±6.12,3 114.1±6.2

Thyroid 87.4±3.1 87.4±3.1 25.3±5.73 25.3±5.73

Flare 664.6±0.7 664.6±0.8 477.4±12.12,3 481.0±13.0

Splice 725.7±12.31 728.9±12.9 620.3±14.22,3 621.3±14.6

Image 218.6±11.4 215.3±11.51 167.3±9.22,3 172.6±9.6

German 498.1±14.51 590.1±12.4 407.7±10.83 407.7±10.83

Banana 230.7±14.21 230.9±14.1 89.4±10.13 89.4±10.13

Table 5.3.6: Average number of support vectors given by the CH-MDM, 2-SMO, 1-SMO and SVM-

Light algorithms, with ε = 0.00001. A superindex stands for a statistically significant difference in

the paired samples; 1 for those of CH-MDM and 2-SMO, 2 for those of 1-SMO and SVM-Light, and
3 for those of the best one between CH-MDM and 2-SMO and the best one between 1-SMO and

SVM-Light.

Dataset IT. MDM IT. 2-SMO IT. 1-SMO IT. SVM-LIGHT

Titanic 367.4±15.61 423.6±22.2 192.4±31.52,3 196.6±37.2

Heart 365.3±12.81 402.0±16.2 269.1±87.83 271.3±85.83

Diabetes 755.1±17.71 2046.1±50.2 602.6±146.32,3 616.4±144.0

Cancer 748.5±30.81,3 1503.6±68.3 3534.5±1844.6 3608.6±1803.9

Thyroid 226.4±8.61,3 258.7±12.0 412.1±170.22 426.3±169.8

Flare 1092.9±29.31,3 1790.3±73.4 1414.3±1106.2 1489.4±1256.7

Splice 2136.9±180.11,3 7287.6±1134.2 3697.4±340.2 3713.3±277.1

Image 8547.6±377.51,3 65610.0±4857.0 136723.3±27906.22 158734.5±36668.3

German 1569.5±80.01,3 32809.9±1164.5 2417.6±272.82 2463.0±271.3

Banana 979.0±59.81,3 1755.0±112.9 99563.5±76471.32 114301.4±89833.6

Table 5.3.7: Average number of iterations given by the CH-MDM, 2-SMO, 1-SMO and SVM-

Light algorithms, with ε = 0.00001. A superindex stands for a statistically significant difference in

the paired samples; 1 for those of CH-MDM and 2-SMO, 2 for those of 1-SMO and SVM-Light, and
3 for those of the best one between CH-MDM and 2-SMO and the best one between 1-SMO and

SVM-Light.



Chapter 6

Discussion and Additional Work

Here we give a concise discussion of the results obtained in the previous chapters. After-

wards, a synopsis of the papers and articles that have been written before or at the time

of writing this work is presented. Finally, we point out some possible future lines of action

to keep on with this research.

6.1 Discussion

We have shown experimentally in the previous chapter the main theoretical results in §4.

In summary, we have seen the following to be true:

• 2-SVMs: the adaptation of Keerthi’s SMO to quadratic penalty SVMs (2-SMO)

operates in the dual analogously to the way CH-MDM operates in the CH-NPP. In

the end, both methods converge to the same model, but in a slightly different way:

CH-MDM removes support vectors more quickly, whereas 2-SMO converges faster,

since it is less restricted in the choice of the working set.

• 1-SVMs: Keerthi’s SMO (1-SMO), which operates on linear penalty SVMs, operates

in the same way than SVM-Light with working sets of just two patterns. 1-SMO has

a slight advantage in comparison since it solves analytically each iteration’s task.

Therefore, it converges a bit faster than its counterpart. The shrinking heuristic in

SVM-Light does not make any difference for the parameters and datasets used.

• One against another: both SVM paradigms achieve similar performances if their

parameters are conveniently chosen. Besides, 1-SVM yields models with less sup-

port vectors than 2-SVM ones, and generally the convergence is faster. However, no

definite conclusions can be drawn, as another choice of parameters may well result

47
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in similar accuracies, but in a different number of support vectors and a different

convergence speed.

Thus, CH-MDM has been put into relationship with SMO and SVM-Light, and also

it has been used as an intermediary to put into relationship the latter two algorithms.

Moreover, in §4 it was not only considered as a decomposition method, but also as a feasible

direction one (while choosing the patterns to update). Hence, our observations open a new

way that we think is worth exploring: basically, we are saying that decomposition and

geometrical algorithms are not very different all in all, so that results in one of these two

trends can be used in the other trend. Besides, there are algorithms in both trends that use

common auxiliary optimization techniques (such as feasible direction ones), so contributions

and ideas in these auxiliary techniques can be used to improve SVM training algorithms

too.

For instance, we have seen how taking the geometrical MDM algorithm, which was

originally designed with a different objective in mind than training SVMs, can be easily

adapted to this task. It has been seen as well how the three algorithms considered ap-

ply either implicitly (SMO and CH-MDM) or explicitly (SVM-Light) Zoutendijk’s feasible

direction method to choose the patterns for solving three different versions of the SVM

training task: linear dual (1-SMO and SVM-Light), quadratic dual (2-SMO) and CH-NPP

(CH-MDM).

6.2 Additional Work

6.2.1 Previous and Simultaneous Work

This new way has begun to be explored soon after coming up with the observations that

compose this work. The following papers have arisen as a result:

• In [32] a different and shorter version of this work’s results is presented. Additionally,

we suggest a possibility for an RCH-MDM algorithm, which basically consists of re-

stricting 1-SMO to choose patterns from the same class, and constraining its updates

to lie into the associated reduced convex hull.

• [33] presents an extension of CH-MDM to work with four patterns at the same time,

that is, in the two hulls simultaneously. We suspect that this algorithm can be put

into relationship with SVM-Light working with q = 4, as well as with a hypothetical

SMO that chooses four patterns to update in each iteration.



Chapter 6. Discussion and Additional Work 49

• [34] explains how CH-MDM can be inefficient in some cases where cycles in the update

directions appear. We suggest a version of the algorithm that checks for cycles and

combines the update directions in a cycle to try to get out of it. This version is shown

to be at least as good as the normal one, and normally it is faster (always converging

to the same model than CH-MDM).

Here is a list of somewhat less related papers:

• In [35] and its extended version [29] we give an algorithm for parameter optimization

that gives quite good results for low dimensionality, and show its application to find

the C and σ parameters of SVMs for binary classification.

• [36] covers Support Vector Regression (SVR), a technique that is not considered in

this work. It compares the performance of 1-SVMs and 2-SVMs for this task, in a

pretty similar way than we did in §5.3. Besides, an alternative proof that CH-NPP

is a rescaled reformulation of the 2-SVM dual is given.

• [37] describes an application of Support Vector Regression to predict the daily wind

energy production of a subset of the wind farms located in Spain.

6.2.2 Future Work

To conclude, we enumerate possible ideas and lines of action that we are working on now

or plan to explore in the near future:

• Compare our RCH-MDM suggestion in [32] with the one given in [21]. We think

that ours will be faster, since it again applies implicitly Zoutendijk’s method to find

the steepest first order descent direction, whereas Tao’s is a somewhere in-the-middle

approach.

• Analyze whether cycles in working set selection also appear in SMO like in CH-MDM.

If that is the case, we would like to accelerate SMO in the same way that we did with

CH-MDM in [34].

• Explore the applicability of second order working set selection in CH-MDM as has

been done for SMO [8, 38]. Check whether second order has or has not a specific

geometrical and/or a feasible direction sense.

• Analyze SVR, since recently a geometrical interpretation of it has appeared in [19],

as well as some SMO proposals to solve the inherent task [39]. We think that it is



Chapter 6. Discussion and Additional Work 50

possible to apply similar reasonings in this case to the ones we have been discussing

for the classification case.

• Study the ν-SVM paradigm [40], since it gets rid of the C parameter substituting it

with a ν bounded parameter. Besides, ν-SVM classification has been shown to be

equivalent to RCH-NPP [12].
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[37] Á. Barbero, J. López, and J. Dorronsoro. Kernel methods for wide area wind gen-

eration forecasting. In Proceedings of the 2008 European Wind Energy Conference

(EWEC), 2008 (por aparecer).

[38] T. Glasmachers and Ch. Igel. Second order smo improves svm online and active

learning. Neural Computation, 20(2):374–382, 2008.

[39] B. Schölkopf and A. J. Smola. Learning With Kernels: Support Vector Machines,

Regularization, Optimization and Beyond. Machine Learning. MIT Press, 2002.

[40] B. Schölkopf and A. J. Smola. New support vector algorithms. Neural Computation,

12:1207–1245, 2000.


	Contents
	Abstract
	Introduction
	Motivation
	Objectives
	Contributions
	Structure

	Support Vector Classification
	Hard-margin Case
	Kernel Algorithms for Support Vector Machines
	Soft-margin with Linear Penalties Case
	Soft-margin with Square Penalties Case
	Geometry of Support Vector Machines
	Hard-margin and Soft-margin with Square Penalties as a Convex Hull Nearest Point Problem
	Soft-margin with Linear Penalties as a Reduced Convex Hull Nearest Point Problem
	Support Vector Classification as a Minimal Norm Problem


	State-of-the-art in Support Vector Machine Training
	Decomposition Algorithms
	SMO Algorithm
	SVM-Light Algorithm

	Geometry-based Algorithms
	Unary MDM Algorithm


	CH-MDM and its Relationship with Decomposition Methods
	Implementation of CH-MDM
	Calculating the margins
	Choosing the Update Direction
	Choosing When to Stop
	Final implementation

	CH-MDM as a Two Vector Decomposition Method
	Relationship between CH-MDM and SMO

	CH-MDM as an Improving Feasible Direction Method
	Relationship between CH-MDM and SVM-Light


	Experimental Results
	Datasets and test methodology
	2-SMO versus CH-MDM
	1-SVM versus 2-SVM

	Discussion and Additional Work
	Discussion
	Additional Work
	Previous and Simultaneous Work
	Future Work


	Bibliography

